Microsystem Technologies

, Volume 23, Issue 9, pp 3873–3880 | Cite as

Modeling and detecting response of micromachining square and circular membranes transducers based on AlN thin film piezoelectric layer

  • Etienne HerthEmail author
  • Laurie Valbin
  • Franck Lardet-Vieudrin
  • Emmanuelle Algré
Technical Paper


Vibration analysis of square and circular piezoelectric micro ultrasonic transducers (pMUTs) in the 100 kHz range as a function of experimental tools are reported. Analytical and 3D finite element method analysis using Comsol software has been performed to model static, modal and vibration behavior of these membranes. Comparison with standard impedancemeter measurement is shown to assess the performance of Laser Doppler Vibrometry system. Mechanical and electrical characterization and comparison with a model results are presented and discussed. The measured resonances frequencies of membrane can be weak and superimposed on important parasitic signal, which may mask the desired mechanical resonance signal. Our results revealed the real roles of the simulations and the combination of the experimental tools to get measurement accuracy. Subsequently, this piezoelectric micro-transducer was successfully tested as a sounder in air. These investigations offer guidance for the pMUTs design and associated electronic circuit but might at the same time be instructive and beneficial to further sensor applications.


Tetra Methyl Ammonium Hydroxide Laser Doppler Vibrometer Aluminium Nitride Parasitic Signal Measure Resonance Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the clean room and characterization laboratory staff at ESIEE and FEMTO-ST. This work was partly supported by the French RENATECH network and its FEMTO-ST technological facility.


  1. Algre E, Legrand B, Faucher M, Walter B, Buchaillot L (2009) Tip-matter interaction measurements using mems ring resonators. In: Solid-state sensors, actuators and microsystems conference, 2009. TRANSDUCERS 2009. International, pp 1638–1641Google Scholar
  2. Belkadi N, Baron T, Dulmet B, Robert L, Herth E, Bernard F (2005) New capacitive micro-acoustic resonators machined in single-crystal silicon stacked structures. In: 2015 joint conference of the IEEE international on frequency control symposium the European Frequency and Time Forum (FCS), pp 787–792. doi: 10.1109/FCS.2015.7138959
  3. Bernstein JJ, Finberg SL, Houston K, Niles LC, Chen HD, Cross LE, Li KK, Udayakumar K (1997) Micromachined high frequency ferroelectric sonar transducers. IEEE Trans Ultrason Ferroelectr Freq Control 44(5):960–969CrossRefGoogle Scholar
  4. Clark JR, Hsu W-T, Abdelmoneum MA, Nguyen CT-C (2005) High-Q UHF micromechanical radial-contour mode disk resonators. J Microelectromech Syst 14(6):1298–1310CrossRefGoogle Scholar
  5. Dargent T, Haddadi K, Lasri T, Clment N, Ducatteau D, Legrand B, Tanbakuchi H, Theron D (2013) An interferometric scanning microwave microscope and calibration method for sub-fF microwave measurements. Rev Sci Instrum 84(12):123705CrossRefGoogle Scholar
  6. Dezest D, Thomas O, Mathieu F, Mazenq L, Soyer C, Costecalde J, Remiens D, De JF, Nicu L (2015) Wafer-scale fabrication of self-actuated piezoelectric nanoelectromechanical resonators based on lead zirconate titanate (PZT). J Micromech Microeng 25(3):035002CrossRefGoogle Scholar
  7. Guisbiers G, Herth E, Legrand B, Rolland N, Lasri T, Buchaillot L (2010) Materials selection procedure for RF-MEMS. J Microelectron Eng 87(9):1792–1795CrossRefGoogle Scholar
  8. Herdier R, Jenkins D, Dogheche E, Rmiens D, Sulc M (2006) Laser Doppler vibrometry for evaluating the piezoelectric coefficient d[sub 33] on thin film. Rev Sci Instrum 77(9):093905CrossRefGoogle Scholar
  9. Hernando J, Sánchez-Rojas JL, González-Castilla S, Iborra E, Ababneh A, Schmid U (2008) Simulation and laser vibrometry characterization of piezoelectric AlN thin films. J Appl Phys 104(5):053502CrossRefGoogle Scholar
  10. Herth E, Rolland N, Lasri T (2010) Circularly polarized millimeter-wave antenna using 0-level packaging. IEEE Antennas Wirel Propag Lett 9:934–937CrossRefGoogle Scholar
  11. Herth E, Algré E, Legrand B, Buchaillot L (2011) Optimization of ohmic contact and adhesion on polysilicon in MEMS-NEMS wet etching process. J Microelectron Eng 88(5):724–728CrossRefGoogle Scholar
  12. Herth E, Seok S, Rolland N, Lasri T (2012) Wafer level packaging compatible with millimeter-wave antenna. Sens Actuators A Phys 173(1):238–243CrossRefGoogle Scholar
  13. Herth E, Algré E, Rauch J-Y, Gerbedoen J-C, Defrance N, Delobelle P (2015) Modeling and characterization of piezoelectric beams based on an aluminum nitride thin-film layer. Phys Status Solidi (a). doi: 10.1002/pssa.201532302 Google Scholar
  14. Kaajakari V, Mattila T, Oja A, Kiihamaki J, Kattelus H, Koskenvuori M, Rantakari P, Tittonen I, Seppa H (2003) Square-extensional mode single-crystal silicon micromechanical RF-resonator. In: 12th international conference on TRANSDUCERS, solid-state sensors, actuators and microsystems, vol. 2, pp 951–954Google Scholar
  15. Lakin KM (1981) Equivalent circuit modeling of stacked crystal filters. In: Thirty fifth annual frequency control symposium, IEEE, pp 257–262Google Scholar
  16. Legrand B, Ducatteau D, Théron D, Walter B, Tanbakuchi H (2013) Detecting response of microelectromechanical resonators by microwave reflectometry. Appl Phys Lett 103(5):053124CrossRefGoogle Scholar
  17. Legrani O, Elmazria O, Zhgoon S, Pigeat P, Bartasyte A (2013) Packageless AlN/ZnO/Si structure for SAW devices applications. IEEE Sens J 13(2):487–491CrossRefGoogle Scholar
  18. Manzaneque T, Hernando J, Rodríguez-Aragón L, Ababneh A, Seidel H, Schmid U, Sánchez-Rojas JL (2010) Analysis of the quality factor of AlN-actuated micro-resonators in air and liquid. Microsyst Technol 16(5):837–845CrossRefGoogle Scholar
  19. Martin F, Muralt P, Dubois M-A, Pezous A (2004) Thickness dependence of the properties of highly c-axis textured AlN thin films. J Vac Sci Technol A 22(2):361–365CrossRefGoogle Scholar
  20. Rao SS (2007) Vibration of continuous systems. Wiley, HobokenGoogle Scholar
  21. Ruiz V, Hernando-Garca J, Ababneh A, Seidel H, Schmid U, Snchez-Rojas JL (2012) Modelling and characterization of AlN-actuated microcantilevers vibrating in the first in-plane mode. Microsyst Technol 18(7–8):997–1001CrossRefGoogle Scholar
  22. Samarao AK, Ayazi F (2011) Combined capacitive and piezoelectric transduction for high performance silicon microresonators. In: 2011 IEEE 24th international conference on micro electro mechanical systems (MEMS), IEEE, pp 169–172Google Scholar
  23. Tabrizian R, Pardo M, Ayazi F (2012) A 27 MHz temperature compensated MEMS oscillator with sub-ppm instability. In: 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS), IEEE, pp 23–26Google Scholar
  24. Tsubouchi K, Nobuo M (1985) Zero-temperature-coefficient SAW devices on AlN epitaxial films. IEEE Trans Sonics Ultrasonics 32(5):634–644CrossRefGoogle Scholar
  25. Valbin L, Sevely L (2001) Piezoelectric aluminum nitride thin films for ultrasonic transducers. In: Micromachining and Microfabrication, pp 95–102. International Society for Optics and PhotonicsGoogle Scholar
  26. Vanotti M, Blondeau-Patissier V, Rauch J-Y, Rabus D, Mazal B, Ballandras S (2013) SAW sensor exploiting palladium layer properties for selective detection of hydrogen. In: European Frequency and Time Forum International Frequency Control Symposium (EFTF/IFC), 2013 Joint, pp 775–778Google Scholar
  27. Virzonis D, Vanagas G, Ramanaviciene A, Makaraviciute A, Barauskas D, Ramanavicius A, Wen W, Kodzius R (2014) Resonant gravimetric immunosensing based on capacitive micromachined ultrasound transducers. Microchim Acta 181(13–14):1749–1757CrossRefGoogle Scholar
  28. Wu Z, Peczalski A, Thakar VA, Cao Z, Yuan Y, He G, Peterson RL, Najafi K, Rais-Zadeh M (2013) Piezoelectrically transduced high-Q silica micro resonators. In: 2013 IEEE 26th international conference on micro electro mechanical systems (MEMS), IEEE, pp 122–125Google Scholar
  29. Xiong Z, Walter B, Mairiaux E, Faucher M, Buchaillot L, Legrand B (2013) MEMS piezoresistive ring resonator for AFM imaging with pico-Newton force resolution. J Micromech Microeng 23(3):035016CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Etienne Herth
    • 1
    Email author
  • Laurie Valbin
    • 2
  • Franck Lardet-Vieudrin
    • 1
  • Emmanuelle Algré
    • 2
  1. 1.CNRS UMR 6174, FEMTO-ST, UFCUniversité de Franche ComtéBesançon CedexFrance
  2. 2.ESYCOM, ESIEE Paris, Cité DESCARTESNoisy le Grand CedexFrance

Personalised recommendations