Advertisement

Microsystem Technologies

, Volume 21, Issue 10, pp 2039–2052 | Cite as

RF-MEMS: an enabling technology for modern wireless systems bearing a market potential still not fully displayed

  • J. Iannacci
Review Paper

Abstract

Since its first discussions in literature during late ‘90 s, RF-MEMS technology (i.e. Radio Frequency MicroElectroMechanical-Systems) has been showing uncommon potential in the realisation of high performance and widely reconfigurable RF passives for radio and telecommunication systems. Nonetheless, against the most confident forecasts for successful exploitation of RF-MEMS technology in mass-market applications, with the mobile phone segment first in line, already commencing from the earliest years of the 2000s, first design wins for MEMS-based RF passives have started to be announced just recently. This paper tries to depict and interpret the substantial circumstances that made RF-MEMS technology fail repeatedly, for about one decade, market forecasts. With the graphical support of the hype cycle concept, it will be shown that missed success of RF-MEMS was first caused by intrinsic (i.e. technology-related) factors. Subsequently, extrinsic elements linked to market acceptance and needs of such a technology, not fully weighted since the beginning, caused the second wave of disappointment around RF-MEMS. Quite unexpectedly, the context has changed rather significantly in recent years. The smartphones market segment started to generate a factual need for highly reconfigurable and high performance RF passive networks, and this circumstance is increasing the momentum of RF-MEMS technology that was expected about one decade ago. This work frames the current state of RF-MEMS market exploitation, also providing highlights on further expansion in mobile and telecommunication systems. Eventually, a focused state of the art report is developed around recent RF-MEMS research findings driven by requirements imposed by current market applications.

Keywords

Radio Frequency Inflated Expectation Radio Frequency Signal Capacitive Switch Mobile Handset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allan R (2013) RF MEMS switches are primed for mass-market applications. http://mwrf.com/active-components/rf-mems-switches-are-primed-mass-market-applications. Accessed 29 May 2015
  2. Ankit J, Nair PR, Alam MA (2011) Strategies for dynamic soft-landing in capacitive microelectromechanical switches. IAP Appl Phys Lett 98:1–3. doi: 10.1063/1.3598960 Google Scholar
  3. ark Y-K, Park H-W, Lee D-J, Park J-H, Song I-S, Kim C-W, Song C-M, Lee Y-H, Kim C-J, Ju BK (2002) A novel low-loss wafer-level packaging of the RF-MEMS devices. In: IEEE international conference on micro electro mechanical systems, pp 681–684. doi: 10.1109/MEMSYS.2002.984362
  4. Ashurst WR, Jang YJ, Magagnin L, Carraro C, Sung MM, Maboudian R (2004) Nanometer-thin titania films with SAM-level stiction and superior wear resistance for reliable MEMS performance. In: Proceedings of the IEEE international conference on micro electro mechanical systems MEMS, pp 153–156. doi: 10.1109/MEMS.2004.1290545
  5. Bakri-Kassem M, Mansour RR (2013) A novel self collapsed corrugated MEMS phase shifter. In: European microwave integrated circuits conference (EuMIC), pp 360–363Google Scholar
  6. Bouchaud J, Knoblich B (2007) RF MEMS switches deliver on early promise. http://www.memsjournal.com/2007/10/rf-mems-switche.html. Accessed 20 May 2015
  7. Bouchaud J, Wicht H (2005) RF MEMS: status of the industry and roadmaps. In: IEEE radio frequency integrated circuits (RFIC) symposium, pp 379–384. doi: 10.1109/RFIC.2005.1489818
  8. Brown ER (1998) RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans Microw Theory Tech 46:1868–1880. doi: 10.1109/22.734501 CrossRefGoogle Scholar
  9. Cavendish Kinetics (2014) Nubia adopts Cavendish Kinetics’ smartune™ antenna tuning solution for its new Z7 LTE smartphone. http://www.cavendish-kinetics.com/index.php/news-media/press-releases/nubia-adopts-smartune/. Accessed 5 June 2015
  10. Cavendish Kinetics (2015) Cavendish Kinetics adds design wins and ramps shipments of RF MEMS tuners. http://www.cavendish-kinetics.com/index.php/news-media/press-releases/ck-adds-design-wins/. Accessed 5 June 2015
  11. Cavendish Kinetics (2015) Cavendish powers nubia Z9: world’s first smartphone with dual antenna tuning. http://www.cavendish-kinetics.com/index.php/news-media/press-releases/cavendish-powers-nubia-z9/. Accessed 5 June 2015
  12. Chakraborty A, Gupta B, Sarkar BK (2014) Design, fabrication and characterization of miniature RF MEMS switched capacitor based phase shifter. Microelectron J 45:1093–1102. doi: 10.1016/j.mejo.2014.05.009 CrossRefGoogle Scholar
  13. Cohn MB, Roehnelt R, Xu J-H, Shteinberg A, Cheung S (2002) MEMS packaging on a budget (fiscal and thermal). Int Conf Electron Circuits Syst ICECS 1:287–290. doi: 10.1109/ICECS.2002.1045390 CrossRefGoogle Scholar
  14. Czaplewski DA, Dyck CW, Sumali H, Massad JE, Kuppers JD, Reines I, Cowan WD, Tigges CP (2006) A soft-landing waveform for actuation of a single-pole single-throw ohmic RF MEMS switch. IEEE J Microelectromechanical Syst 15:1586–1594. doi: 10.1109/JMEMS.2006.883576 CrossRefGoogle Scholar
  15. De Angelis G, Lucibello A, Marcelli R, Catoni S, Lanciano A, Buttiglione R, Dispenza M, Giacomozzi F, Margesin B, Maglione A, Erspan M, Combi C (2008) Packaged single pole double thru (SPDT) and true time delay lines (TTDL) based on RF MEMS switches. CAS Semicond Conf 1:227–230. doi: 10.1109/SMICND.2008.4703376 Google Scholar
  16. De Silva AP, Hughes HG (2003) The package integration of RF-MEMS switch and control IC for wireless applications. IEEE Trans Adv Packag 26:255–260. doi: 10.1109/TADVP.2003.818056 CrossRefGoogle Scholar
  17. DelfMEMS (2015) DelfMEMS announces that its breakthrough, SP12T, RF-MEMS ohmic switch has passed the one billion operations milestone. http://www.delfmems.com/press_release/delfmems-announces-its-breakthrough-sp12t-rf-mems-ohmic-switch-has-passed-one-billion. Accessed 5 June 2015
  18. DeLisle J-J (2014) The future of connectivity: mobile & automobiles. http://mwrf.com/systems/future-connectivity-mobile-automobiles. Accessed 20 May 2015
  19. DeNatale J, Mihailovich R (2003) RF MEMS reliability. In: 12th International conference on solid-state sensors, actuators and microsystems TRANSDUCERS, vol 2, pp 943–946. doi: 10.1109/SENSOR.2003.1216922
  20. Domingue F, Fouladi S, Mansour RR (2010) A reconfigurable impedance matching network using dual-beam MEMS switches for an extended operating frequency range. In: IEEE MTT-S international microwave symposium digest (MTT), pp 1–1. doi: 10.1109/MWSYM.2010.5515472
  21. Entesari K, Obeidat K, Brown AR, Rebeiz GM (2007) A 25–75-MHz RF MEMS TUNABLE Filter. IEEE Trans Microw Theory Tech 55:2399–2405. doi: 10.1109/TMTT.2007.908674 CrossRefGoogle Scholar
  22. Gartner, Inc (2015) Interpreting technology hype. http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp. Accessed 19 May 2015
  23. Gil I, Martin F, Rottenberg X, De Raedt W (2007) Tunable stop-band filter at Q-band based on RF-MEMS metamaterials. IET Electron Lett 43:1153–1153. doi: 10.1049/el:20072164
  24. Gong S, Shen H, Barker NS (2011) A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches. IEEE Trans Microw Theory Tech 59:894–900. doi: 10.1109/TMTT.2011.2112374 CrossRefGoogle Scholar
  25. Huang Y, Bao J, Li X, Wang Y, Du Y (2015) A 4-bit switched-line phase shifter based on MEMS switches. In: Proceedings of IEEE 10th international conference on nano/micro engineered and molecular systems (NEMS), pp 405–408. doi: 10.1109/NEMS.2015.7147454
  26. Iannacci J (2013a) Practical guide to RF-MEMS. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  27. Iannacci J (2013b) RF MEMS passive components for wireless applications. In: Uttamchandani D (ed) Handbook of MEMS for wireless and mobile applications, 1st edn. Woodhead Publishing, Cambridge, pp 100–135CrossRefGoogle Scholar
  28. Iannacci J (2015) Reliability of MEMS: a perspective on failure mechanisms, improvement solutions and best practices at development level. Elsevier Disp 37:62–71. doi: 10.1016/j.displa.2014.08.003 Google Scholar
  29. Iannacci J, Tian J, Sosin S, Gaddi R, Bartek M (2006) Hybrid wafer-level packaging for RF MEMS applications. In: International wafer-level packaging conference IWLPC, pp 106–113Google Scholar
  30. Iannacci J, Bartek M, Tian J, Gaddi R, Gnudi A (2008) Electromagnetic optimization of an RF-MEMS wafer-level package. Elsevier Sensors Actuators A Phys 142:434–441. doi: 10.1016/j.sna.2007.08.018 CrossRefGoogle Scholar
  31. Iannacci J, Faes A, Mastri F, Masotti D, Rizzoli V (2010) A MEMS-based wide-band multi-state power attenuator for Radio Frequency and Microwave Applications. Proc NSTI Microtech 2:328–331Google Scholar
  32. Iannacci J, Masotti D, Kuenzig T, Niessner N (2011) A reconfigurable impedance matching network entirely manufactured in RF-MEMS technology. In: Proceedings of SPIE Smart Sensors, Actuators, and MEMS, vol 8066, pp 1–12. doi: 10.1117/12.886186
  33. Iannacci J, Faes A, Repchankova A, Tazzoli A, Meneghesso G (2011b) An active heat-based restoring mechanism for improving the reliability of RF-MEMS switches. Elsevier Microelectron Reliab 51:1869–1873. doi: 10.1016/j.microrel.2011.06.019 CrossRefGoogle Scholar
  34. Ilkhechi AK, Mirzajani H, Aghdam EN, Ghavifekr HB (2015) A novel electrostatically actuated spdt rotary RF MEMS switch for ultra-broadband applications. In: Proceedings of the 23rd Iranian conference on electrical engineering (ICEE), pp 1175–1179. doi: 10.1109/IranianCEE.2015.7146392
  35. IHS iSuppli (2012) IHS iSuppli teardown analysis service identifies first use of RF MEMS part, set to be next big thing in cellphone radios. http://press.ihs.com/press-release/design-supply-chain/ihs-isuppli-teardown-analysis-service-identifies-first-use-rf-mems. Accessed 4 June 2015
  36. Izadian A, Famouri P (2008) Reliability enhancement of MEMS lateral comb resonators under fault conditions. IEEE Trans Control Syst Technol 16:726–734. doi: 10.1109/TCST.2007.912233 CrossRefGoogle Scholar
  37. Jacobs School of Engineering (2014) RF MEMS: new Possibilities for smartphones. http://www.jacobsschool.ucsd.edu/pulse/winter2014/page5.sfe. Accessed 29 May 2015
  38. Jourdain A, Ziad H, De Moor P, Tilmans HAC (2003) Wafer-scale 0-level packaging of (RF-)MEMS devices using BCB. In: Symposium on design, test, integration and packaging of MEMS/MOEMS, pp 239–244. doi: 10.1109/DTIP.2003.1287044
  39. MEMS Journal (2010) Cell phone antenna troubles? RF MEMS come to the rescue. http://www.memsjournal.com/2010/09/cell-phone-antenna-troubles-rf-mems-come-to-the-rescue.html. Accessed 20 May 2015
  40. Katehi LPB, Rebeiz GM, Nguyen CT-C (1998) MEMS and Si-micromachined components for low-power, high-frequency communications systems. In: IEEE MTT-S international microwave symposium digest, vol 1, pp 331–333. doi: 10.1109/MWSYM.1998.689386
  41. Kuenzig T, Schrag G, Iannacci J (2012) Modeling and simulation of an active restoring mechanism for high reliability switches in RF-MEMS technology. Elsevier Microelectron Reliab 52:2235–2239. doi: 10.1016/j.microrel.2012.06.137 CrossRefGoogle Scholar
  42. Kuenzig T, Muschol T, Iannacci J, Schrag G, Wachutka G (2014) Analysis of RF-MEMS switches in failure mode: towards a more robust design. In: International conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), pp 1–6. doi: 10.1109/EuroSimE.2014.6813812
  43. Larcher L, Brama R, Ganzerli M, Iannacci J, Margesin B, Bedani M, Gnudi A (2009) A MEMS reconfigurable quad-band class-E power amplifier for Gsm standard. In: IEEE 22nd international conference on micro electro mechanical systems MEMS, pp 864–867. doi: 10.1109/MEMSYS.2009.4805520
  44. Lavasani HM, Pan W, Harrington BP, Abdolvand R, Ayazi F (2012) Electronic temperature compensation of lateral bulk acoustic resonator reference oscillators using enhanced series tuning technique. IEEE J Solid State Circuits 47:1381–1393. doi: 10.1109/JSSC.2012.2192657 CrossRefGoogle Scholar
  45. Li G, Hanke U, Cheng Z, Min D, San H, Chen X (2011) Si3N4/SiO2 dielectric stacks for high reliable capacitive RF MEMS switch. In: Proceedings of the IEEE conference on nanotechnology IEEE-NANO, pp 496–499. doi: 10.1109/NANO.2011.6144348
  46. Lisec T, Huth C, Wagner B (2004) Dielectric material impact on capacitive RF MEMS reliability. In: 34th European microwave conference, vol 1, pp 73–76Google Scholar
  47. Liu C (2011) Foundations of MEMS. Prentice Hall, Upper Saddle RiverGoogle Scholar
  48. Longoni G, Conte A, Moraja M, Fourrier A (2006) Stable and reliable Q-factor in resonant MEMS with getter film. In: Proceedings of the IEEE international reliability physics symposium, pp 416–420. doi: 10.1109/RELPHY.2006.251254
  49. Lu Y, Katehi LPB, Peroulis D (2005) A novel MEMS impedance tuner simultaneously optimized for maximum impedance range and power handling. In: IEEE MTT-S International microwave symposium digest, pp 1–4. doi: 10.1109/MWSYM.2005.1516775
  50. Lu ACW, Chua KM, Li HG (2005) Emerging manufacturing technologies for RFIC, antenna and RF-MEMS integration. In: IEEE International workshop on radio-frequency integration technology: integrated circuits for wideband communication and wireless sensor networks, pp 142–146. doi: 10.1109/RFIT.2005.1598895
  51. Lucibello A, Capoccia G, Proietti E, Marcelli R, Margesin B, Mulloni V, Giacomozzi F, Vitulli F, Scipioni M, Bartolucci G (2015) Reliable response of RF MEMS LTCC packaged switches after mechanical and thermal stress. In: Springer microsystem technologies, pp 1–7. doi: 10.1007/s00542-015-2577-5
  52. Mahameed R, Rebeiz G (2010) A high-power temperature-stable electrostatic RF MEMS capacitive switch based on a thermal buckle-beam design. IEEE J Microelectromechanical Syst 19:816–826. doi: 10.1109/JMEMS.2010.2049475 CrossRefGoogle Scholar
  53. Margomenos A, Katehi LPB (2002) DC to 40 GHz on-wafer package for RF MEMS switches. In: IEEE topical meeting on electrical performance of electronic packaging, pp 91–94. doi: 10.1109/EPEP.2002.1057890
  54. Margomenos A, Katehi LPB (2003) High frequency parasitic effects for on-wafer packaging of RF MEMS switches. In: IEEE MTT-S international microwave symposium digest, vol 3, pp 1931–1934. doi: 10.1109/MWSYM.2003.1210536
  55. Martin MJC (1994) Managing innovation and entrepreneurship in technology-based firms. Wiley, HobokenGoogle Scholar
  56. Martinez J, Blondy A, Pothier A, Bouyge D, Crunteanu A, Chatras M (2007) Surface and bulk micromachined RF MEMS capacitive series switch For watt-range hot switching operation. In: European microwave conference, vol 1237–1240. doi: 10.1109/EUMC.2007.4405424
  57. McGrath D (2012) Teardown finds RF MEMS in samsung handset. http://www.eetimes.com/document.asp?doc_id=1260917. Accessed 20 May 2015
  58. Melle S, Flourens F, Dubuc D, Grenier K, Pons P, Pressecq F, Kuchenbecker J, Muraro JL, Bary L, Plana R (2003) Reliability overview of RF MEMS devices and circuits. In: 33rd European microwave conference, pp 37–40. doi: 10.1109/EUMA.2003.340820
  59. Nguyen CT-C (1998) Microelectromechanical devices for wireless communications. IN: Proceedings of international workshop on micro electro mechanical systems (MEMS), pp 1–7. doi: 10.1109/MEMSYS.1998.659719
  60. Nguyen CT-C (2001) Transceiver front-end architectures using vibrating micromechanical signal processors. In: Topical meeting on silicon monolithic integrated circuits in RF systems, pp 23–32. doi: 10.1109/SMIC.2001.942335
  61. Nguyen CT-C (2002) RF MEMS for wireless applications. In: Device research conference (DRC), pp 9–12. doi: 10.1109/DRC.2002.1029485
  62. Nguyen CT-C (2006) Integrated micromechanical circuits for RF front ends. In: Proceedings of the European solid-state circuits conference ESSCIRC, pp 7–16. doi: 10.1109/ESSCIR.2006.307523
  63. Nguyen CT-C (2007) MEMS technology for timing and frequency control. In: IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol 54, pp 251–270. doi: 10.1109/TUFFC.2007.240
  64. Nguyen CT-C (2013) MEMS-based RF channel selection for true software-defined cognitive radio and low-power sensor communications. IEEE Commun Mag 51:110–119. doi: 10.1109/MCOM.2013.6495769 CrossRefGoogle Scholar
  65. Nishino T, Kitsukawa Y, Hangai M, Lee S-S, Soda S-N, Miyazaki M, Naitoh I, Konishi Y (2009) Tunable MEMS hybrid coupler and L-band tunable filter. In: IEEE MTT-S international microwave symposium digest, pp 1045–1048. doi: 10.1109/MWSYM.2009.5165879
  66. Ocera A, Farinelli P, Mezzanotte P, Sorrentino R, Margesin B, Giacomozzi F (2007) Novel RF-MEMS widely-reconfigurable directional coupler. In: European microwave conference, pp 122–125. doi: 10.1109/EUMC.2007.4405141
  67. Pacheco S, Zurcher P, Young S, Weston D, Dauksher W (2004) RF MEMS resonator for CMOS back-end-of-line integration. In: Topical meeting on silicon monolithic integrated circuits in RF systems, pp 203–206. doi: 10.1109/SMIC.2004.1398203
  68. Pagazani J, Lissorgues G, Mehdaoui A, Schropfer G, Vinh-Dinh T, Pasquet D, Nicole P (2015) A RF tunable Agile filter: from component to system design. In: Proceedings of the symposium on design, test, integration and packaging of MEMS/MOEMS (DTIP), pp 1–6. doi: 10.1109/DTIP.2015.7160974
  69. Park Y-K, Kim Y-K, Hoon K, Lee D-J, Kim C-J, Ju B-K, Park J-O (2003) A novel thin chip scale packaging of the RF-MEMS devices using ultra thin silicon. In: IEEE international conference on micro electro mechanical systems, pp 618–621. doi: 10.1109/MEMSYS.2003.1189825
  70. Patel C, Rebeiz GM (2010) An RF-MEMS switch with mN contact forces. In: IEEE MTT-S international microwave symposium digest (MTT). doi: 10.1109/MWSYM.2010.5518064
  71. Pensala T, Jaakkola A, Prunnila M, Dekker J (2011) Temperature compensation of silicon MEMS resonators by heavy doping. In: Proceedings of IEEE international ultrasonics symposium IUS, pp 1952–1955. doi: 10.1109/ULTSYM.2011.0486
  72. Reines I, Park S-J, Rebeiz GM (2010) Compact low-loss tunable X-band bandstop filter with miniature RF-MEMS switches. IEEE Trans Microw Theory Tech 58:1887–1895. doi: 10.1109/TMTT.2010.2050621 CrossRefGoogle Scholar
  73. Reinke J, Wang L, Fedder GK, Mukherjee T (2011) A 4-bit RF MEMS phase shifter monolithically integrated with conventional CMOS. In: IEEE 24th international conference on micro electro mechanical systems (MEMS), pp 748–751. doi: 10.1109/MEMSYS.2011.5734533
  74. Rizk JB, Chaiban E, Rebeiz GM (2002) Steady state thermal analysis and high-power reliability considerations of RF MEMS capacitive switches. In: IEEE MTT-S international microwave symposium digest, vol 1, pp 239–243. doi: 10.1109/MWSYM.2002.1011602
  75. Shalaby M, Wang Z, Chow L-W, Jensen B, Volakis J, Kurabayashi K, Saitou K (2009) Robust Design of RF-MEMS cantilever switches using contact physics modeling. IEEE Trans Industr Electron 56:1012–1021. doi: 10.1109/TIE.2008.2006832 CrossRefGoogle Scholar
  76. Solazzi F, Tazzoli A, Farinelli P, Faes A, Mulloni V, Meneghesso G, Margesin B (2010) Active recovering mechanism for high performance RF MEMS redundancy switches. In: Proceedings of the European microwave conference EuMC, pp 93–96Google Scholar
  77. Sousa PM, Chu V, Conde JP (2012) Reliability and stability of thin-film amorphous silicon MEMS resonators. IOP J Micromechanics Microengineering 22:1–8. doi: 10.1088/0960-1317/22/6/065030 Google Scholar
  78. Stefanini R, Chatras M, Pothier A, Guines C, Blondy P (2013) High-Q 3D tunable RF MEMS filter with a constant fractional bandwidth. In: Proceedings of the European microwave integrated circuits conference (EuMIC), pp 312–315Google Scholar
  79. Stehle A, Georgiev G, Ziegler V, Schoenlinner B, Prechtel U, Schmid U, Seidel H (2009) Broadband single-pole multithrow RF-MEMS switches for KA-band. In: German microwave conference, pp 1–4. doi: 10.1109/GEMIC.2009.4815911
  80. Tazzoli A, Iannacci J, Meneghesso G (2011) A positive exploitation of ESD events: Micro-welding induction on ohmic MEMS contacts. In: Electrical overstress/electrostatic discharge symposium (EOS/ESD), pp 1–8Google Scholar
  81. Th Rijks GSM, van Beek JTM, Ulenaers MJE, De Coster J, Puers R, den Dekker A, van Teeffelen L (2003) Passive integration and RF MEMS: a toolkit for adaptive LC circuits. In: European solid-state circuits conference ESSCIRC, pp 269–272. doi: 10.1109/ESSCIRC.2003.1257124
  82. Thakur S, Sumithra Devi K, Ranjitha I (2009) Performance of low loss RF MEMS fixed-fixed capacitive switch characterization. In: Applied electromagnetics conference (AEMC), pp 1–4. doi: 10.1109/AEMC.2009.5430610
  83. Uno Y, Narise K, Masuda T, Inoue K, Adachi Y, Hosoya K, Seki T, Sato F (2009) Development of SPDT-structured RF MEMS switch. In: International solid-state Sensors, actuators and microsystems conference TRANSDUCERS, pp 541–544. doi: 10.1109/SENSOR.2009.5285381
  84. Van Caekenberghe K, Vaha-Heikkila T (2008) An analog RF MEMS slotline true-time-delay phase shifter. IEEE Trans Microw Theory Tech 56:2151–2159. doi: 10.1109/TMTT.2008.2002236 CrossRefGoogle Scholar
  85. Varadan VK (2002) RF MEMS and their applications. John, HobokenCrossRefGoogle Scholar
  86. Diaferia F, Deborgies F, Di Nardo S, Espana B, Farinelli P, Lucibello A, Marcelli R, Margesin B, Giacomozzi F, Vietzorreck L, Vitulli, F (2014) Compact 12 × 12 switch matrix integrating RF MEMS switches in LTCC hermetic packages. In: Proceedings of the 44th European microwave conference (EuMC), pp 199–202. doi: 10.1109/EuMC.2014.6986404
  87. Vorobyov A, Sauleau R, Fourn E, Oberhammer J, Baghchehsaraei Z (2011) MEMS based waveguide phase shifters for phased arrays in automotive radar applications. In: Proceedings of the 5th European conference on antennas and propagation (EUCAP), pp 2087–2090Google Scholar
  88. Yang ZA, Peroulis D (2014) A 23–35 GHz MEMS tunable all-silicon cavity filter with stability characterization up to 140 million cycles. IEEE MTT-S International Microwave Symposium (IMS) 1–4. doi:  10.1109/MWSYM.2014.6848663
  89. Yang H, Yahiaoui A, Zareie H, Blondy P, Rebeiz GM (2015a) Symmetric and compact single-pole multiple-throw (SP7T, SP11T) RF MEMS switches. IEEE J Microelectromechanical Syst 24:685–695. doi: 10.1109/JMEMS.2014.2344694 CrossRefGoogle Scholar
  90. Yang H, Zareie H, Rebeiz GM (2015b) A high power stress-gradient resilient RF MEMS capacitive switch. IEEE J Microelectromechanical Syst 24:599–607. doi: 10.1109/JMEMS.2014.2335173 CrossRefGoogle Scholar
  91. Y-q Zhu, Han L, Qin M, Q-a Huang (2014) Novel DC-40 GHz MEMS series-shunt switch for high isolation and high power applications. Elsevier Sensors Actuators A Phys 214:101–110. doi: 10.1016/j.sna.2014.04.024 CrossRefGoogle Scholar
  92. Zhang QX, Yu AB, Yang R, Li HY, Guo LH, Liao EB, Tang M, Kumar R, Liu AQ, Lo GQ, Balasubramanian N, Kwong DL (2006) Novel monolithic integration of RF-MEMS switch with CMOS-IC on organic substrate for compact RF system. International Electron Devices Meeting IEDM 1–4. doi: 10.1109/IEDM.2006.346890
  93. Ziegler V, Siegel C, Schonlinner B, Prechtel U, Schumacher H (2005) RF-MEMS switches based on a low-complexity technology and related aspects of MMIC integration. European Gallium Arsenide and Other Semiconductor Application Symposium EGAAS 289–292Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.MicroSystems Technology (MST) Research UnitCenter for Materials and Microsystems (CMM), Fondazione Bruno Kessler (FBK)PovoItaly

Personalised recommendations