Advertisement

Microsystem Technologies

, Volume 22, Issue 3, pp 459–464 | Cite as

A dual-axis MEMS capacitive inertial sensor with high-density proof mass

  • Daisuke YamaneEmail author
  • Takaaki Matsushima
  • Toshifumi Konishi
  • Hiroshi Toshiyoshi
  • Kazuya Masu
  • Katsuyuki Machida
Technical Paper

Abstract

This paper reports a novel dual-axis microelectromechanical systems (MEMS) capacitive inertial sensor that utilizes multi-layered electroplated gold. All the MEMS structures are made by gold electroplating that is used as a post complementary metal-oxide semiconductor (CMOS) process. Due to the high density of gold, the Brownian noise on the proof mass becomes lower than those made of other materials such as silicon in the same size. The single gold proof mass works as a dual-axis sensing electrode by utilizing both out-of-plane (Z axis) and in-plane (X axis) motions; the proof mass has been designed to be 660 μm × 660 μm in area with the thickness of 12 μm, and the actual Brownian noise in the proof mass has been measured to be 1.2 \({\upmu}{\text{G/}}\sqrt {\text{Hz}}\) (in Z axis) and 0.29 \({\upmu}{\text{G/}}\sqrt {\text{Hz}}\) (in X axis) at room temperature, where 1 G = 9.8 m/s2. The miniaturized dual-axis MEMS accelerometer can be implemented in integrated CMOS-MEMS accelerometers to detect a broad range of acceleration with sub-1G resolution on a single sensor chip.

Keywords

Sensor Chip Proof Mass Vibration Exciter Brownian Noise Mechanical Resonant Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Dr. T. Maruno, Dr. Y. Akatsu, M. Yano, and K. Kudo with NTT-AT for technical discussions. This work is supported by the Grant-in-Aid for Scientific Research 23360149, 15K17453, 25630138, and the NEXT program (GR024) of the Japan Society for the Promotion of Science (JSPS).

References

  1. Abdolvand R, Vakili B, Ayazi F (2007) Sub-micro-gravity in-plane accelerometers with reduced capacitive gaps and extra seismic mass. J Microelectromech Syst 16(5):1036–1043. doi: 10.1109/JMEMS.2007.900879 CrossRefGoogle Scholar
  2. Boser BE, Howe RT (1996) Surface micromachined accelerometers. IEEE J Solid-State Circuits 31(3):366–375. doi: 10.1109/4.494198 CrossRefGoogle Scholar
  3. Chae J, Kulah H, Najafi K (2005) A monolithic three-axis micro-g micromachined silicon capacitive accelerometer. J Microelectromech Syst 14(2):235–242. doi: 10.1109/JMEMS.2004.839347 CrossRefGoogle Scholar
  4. Hong Y-J, Kim I-J, Ahn SC, Kim H-G (2010) Mobile health monitoring system based on activity recognition using accelerometer. Simul Model Pract Theor 18:446–455. doi: 10.1016/j.simpat.2009.09.002 CrossRefGoogle Scholar
  5. International Technology Roadmap for Semiconductors 2013 edition. Micro-electro-mechanical systems (MEMS). http://www.itrs.net/Links/2013ITRS/2013Chapters/2013MEMS.pdf. Accessed 12 June 2014
  6. Konishi T, Yamane D, Matsushima T, Motohashi G, Kagaya K, Ito H, Ishihara N, Toshiyoshi H, Machida K, Masu K (2013) Novel sensor structure and its evaluation for integrated complementary metal oxide semiconductor microelectromechanical systems accelerometer. Jpn J Appl Phys. doi: 10.7567/JJAP.52.06GL04 Google Scholar
  7. Konishi T, Yamane D, Matsushima T, Masu K, Machida K, Toshiyoshi H (2014) An arrayed accelerometer device of a wide range of detection for integrated CMOS-MEMS technology. Jpn J Appl Phys 53:027202. doi: 10.7567/JJAP.53.027202 CrossRefGoogle Scholar
  8. Lemkin M, Boser BE (1999) A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE J Solid-State Circuits 34(4):456–468. doi: 10.1109/4.753678 CrossRefGoogle Scholar
  9. Lide DR (1994) CRC Handbook of chemistry and physics, 75th edn. CRC, FloridaGoogle Scholar
  10. Sun H, Fang D, Jia K, Maarouf F, Qu H, Xie H (2011) A low-power low-noise dual-chopper amplifier for capacitive CMOS-MEMS accelerometer. IEEE Sens J 11(4):925–933. doi: 10.1109/JSEN.2010.2064296 CrossRefGoogle Scholar
  11. Tan S-S, Liu C-Y, Yeh L-K, Chiu Y-H, Lu MS-C, Hsu KYJ (2011) An integrated low-noise sensing circuit with efficient bias stabilization for CMOS MEMS capacitive accelerometer. IEEE Trans Cir Syst 58(11):2661–2672. doi: 10.1109/TCSI.2011.2142990 CrossRefMathSciNetGoogle Scholar
  12. Tsai M-H, Liu Y-C, Fang W (2012) A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes. J Microelectromech Syst 21(6):1329–1337. doi: 10.1109/JMEMS.2012.2205904 CrossRefGoogle Scholar
  13. Tseng S-H, Lu MS-C, Wu P-C, Teng Y-C, Tsai H-H, Juang Y-Z (2012) Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 mm CMOS MEMS process. J Micromech Microeng. doi: 10.1088/0960-1317/22/5/055010 Google Scholar
  14. Yamane D, Konishi T, Matsushima T, Machida K, Toshiyoshi H, Masu K (2014) Design of sub-1g microelectromechanical systems accelerometers. Appl Phys Lett 104:074102. doi: 10.1063/1.4865377 CrossRefGoogle Scholar
  15. Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. Proc IEEE 86(8):1640–1659. doi: 10.1109/5.704269 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daisuke Yamane
    • 1
    • 2
    Email author
  • Takaaki Matsushima
    • 3
  • Toshifumi Konishi
    • 3
  • Hiroshi Toshiyoshi
    • 2
    • 4
  • Kazuya Masu
    • 1
    • 2
  • Katsuyuki Machida
    • 1
    • 2
    • 3
  1. 1.Tokyo Institute of TechnologyYokohamaJapan
  2. 2.CREST, JSTKawaguchiJapan
  3. 3.NTT Advanced Technology CorporationAtsugiJapan
  4. 4.The University of TokyoMeguroJapan

Personalised recommendations