Microsystem Technologies

, Volume 21, Issue 8, pp 1627–1631 | Cite as

Room temperature Si–Ti thermopile THz sensor

  • Sofiane Ben Mbarek
  • Sébastien Euphrasie
  • Thomas Baron
  • Laurent Thiery
  • Pascal Vairac
  • Danick Briand
  • Jean-Paul Guillet
  • Laurent Chusseau
Technical Paper

Abstract

In this paper, we present the conception, fabrication and characterization of a thermopile designed to detect terahertz electromagnetic fields at room temperature. The thermopile is made of four doped silicon/titanium thermocouples. The absorber consists of a metallic grid made of titanium, deposited at the same time as the metal part of the thermocouples. The design of the grid is based on a theoretical multilayer model using equivalent resistivity and taking into account small diffraction effects. The grid is deposited on a 2.4 mm × 2.4 mm silicon nitride square membrane. The time constant of the sensor is measured at 0.3 THz to be 10 ms, which is consistent with finite elements simulations. The responsivity is evaluated at 4.8 μV/(W m−2). Due to a large impedance, which leads to a large Johnson noise, the noise equivalent power is 1.5 × 10−6 W Hz−1/2.

Notes

Acknowledgments

This work was supported by the French National Agency (ANR) through the Project TERASCOPE No. ANR-06-BLAN-0073-02.

References

  1. Appleby R, Wallace HB (2007) Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Trans Antennas Propag 55(11):2944–2956CrossRefGoogle Scholar
  2. Baron T, Euphrasie S, Mbarek SB, Vairac P, Cretin B (2009) Design of metallic mesh absorbers for high bandwidth electromagnetic waves. Prog Electromag Res C 8:135–147CrossRefGoogle Scholar
  3. Ben Mbarek S, Euphrasie S, Baron T, Thiery L, Vairac P, Cretin B, Guillet JP, Chusseau L (2013) Room temperature thermopile THz sensor. Sens Actuators A: Phys 193:155–160CrossRefGoogle Scholar
  4. Bock JJ, Chen D, Mauskopf PD, Lange AE (1995) A novel bolometer for infrared and millimeter-wave astrophysics. Space Sci Rev 74(1–2):229–235CrossRefGoogle Scholar
  5. Briand D, Teyssieux D, Courbat J, Thiery L, Cretin B, de Rooij N (2008) On the thermal simulation and characterisation of microsystems: progress and status. Eurosensors XXII, Dresden, vol 1, pp 133–136Google Scholar
  6. Chen Q, Zhang XC (2001) Semiconductor dynamic aperture for near-field terahertz wave imaging. IEEE J Sel Top Quantum Electronics 7(4):608–614CrossRefGoogle Scholar
  7. Geballe T, Hull G (1955) Seebeck effect in silicon. Phys Rev 98(4):940–947CrossRefGoogle Scholar
  8. Hadley LN, Dennison DM (1947) Reflection and transmission interference filters. J Opt Soc Am 37(6):451CrossRefGoogle Scholar
  9. Han PY, Cho GC, Zhang XC (2000) Time-domain transillumination of biological tissues with terahertz pulses. Opt Lett 25(4):242CrossRefGoogle Scholar
  10. Hilsum C (1954) Infrared absorption of thin metal films. J Opt Soc Am 44(3):188CrossRefGoogle Scholar
  11. Hu BB, Nuss MC (1995) Imaging with terahertz waves. Opt Lett 20(16):1716CrossRefGoogle Scholar
  12. Mbarek S, Baron T, Euphrasie S, Cretin B, Vairac P, Adam R, Chusseau L, Guillet J, Penarier A (2009) Theoretical and experimental studies of metallic grids absorption: application to the design of a bolometer. Procedia Chem 1(1):1135–1138CrossRefGoogle Scholar
  13. Siegel P (2002) Terahertz technology. IEEE Trans Microwave Theory Tech 50(3):910–928CrossRefGoogle Scholar
  14. Sizov F, Rogalski A (2010) THz detectors. Progr Quantum Electronics 34(5):278–347CrossRefGoogle Scholar
  15. Thiery L, Briand D, Odaymat A, de Rooij N (2004) Contribution of scanning probe temperature measurements to the thermal analysis of micro-hotplates. Therminic 2004. Sophia Antipolis, France, pp 23–28Google Scholar
  16. Thiery L, Toullier S, Teyssieux D, Briand D (2008) Thermal contact calibration between a thermocouple probe and a microhotplate. J Heat Transfer 130(9):091,601Google Scholar
  17. Thiery L, Gavignet E, Cretin B (2009) Two omega method for active thermocouple microscopy. Rev Sci Instrum 80(3):034,901.Google Scholar
  18. Tonouchi M (2007) Cutting-edge terahertz technology. Nature Photon 1(2):97–105CrossRefGoogle Scholar
  19. Tonouchi M (2009) Galore new applications of terahertz science and technology. Terahertz Sci Technol 2(3):90–101Google Scholar
  20. Ulrich R (1967) Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys 7(1):37–55CrossRefGoogle Scholar
  21. Yu C, Fan S, Sun Y, Pickwell-MacPherson E (2012) The potential of terahertz imaging for cancer diagnosis a review of investigations to date. Quant Imaging Med Surg 2:33–45Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sofiane Ben Mbarek
    • 1
  • Sébastien Euphrasie
    • 1
  • Thomas Baron
    • 1
  • Laurent Thiery
    • 1
  • Pascal Vairac
    • 1
  • Danick Briand
    • 2
  • Jean-Paul Guillet
    • 3
  • Laurent Chusseau
    • 3
  1. 1.FEMTO-ST, Université de Franche-Comté, CNRS, ENSMM, UTBMBesançonFrance
  2. 2.Ecole Polytechnique Fédérale de Lausanne, Institute of Microengineering, SAMLABNeuchâtelSwitzerland
  3. 3.Institut d’Électronique du SudUMR 5214 CNRS, Université de Montpellier IIMontpellierFrance

Personalised recommendations