Microsystem Technologies

, Volume 21, Issue 3, pp 619–624 | Cite as

A polymer-based spiky microelectrode array for electrocorticography

  • Gergely MártonEmail author
  • Marcell Kiss
  • Gábor Orbán
  • Anita Pongrácz
  • István Ulbert
Technical Paper


The advanced technology of microelectromechanical systems (MEMS) makes possible precise and reproducible construction of various microelectrode arrays (MEAs) with patterns of high spatial density. Polymer-based MEMS devices are gaining increasing attention in the field of electrophysiology, since they can be used to form flexible, yet reliable electrical interfaces with the central and the peripheral nervous system. In this paper we present a novel MEA, designed for obtaining neural signals, with a polyimide (PI)—platinum (Pt)—SU-8 layer structure. Electrodes with special, arrow-like shapes were formed in a single row, enabling slight penetration into the tissue. The applied process flow allowed reproducible batch fabrication of the devices with high yield. In vitro characterization of the electrode arrays was performed with electrochemical impedance spectroscopy in lactated Ringer’s solution. Functional tests were carried out by performing acute recordings on rat neocortex. The devices have proven to be convenient tools for acute in vivo electrocorticography.


Polyimide Print Circuit Board Electrode Array Local Field Potential TiOx 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank Mrs. Károlyné Payer, Mr. Róbert Hodován and Mr. András Lőrincz for their support in microfabrication. We are also grateful to Attila Nagy for his help with packaging. This work was funded by the Bolyai János Grant of the HAS to Anita Pongrácz and the OTKA K81354, KTIA_13_NAP-A-IV/1-2-3-6, ANR-TÉT Multisca, TAMOP-4.2.1.B-11/2/KMR-2011-0002 grants to István Ulbert.


  1. Altuna A, Menendez de la Prida L, Bellistri E, Gabriel G, Guimerá A, Berganzo J, Villa R, Fernández LJ (2012) SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron 37:1–5CrossRefGoogle Scholar
  2. Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, Stieglitz T (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26:62–69CrossRefGoogle Scholar
  3. Chang TY, Yadav VG, De Leo S, Mohedas A, Rajalingam B, Chen CL, Selvarasah S, Dokmeci MR, Khademhosseini A (2007) Cell and protein compatibility of parylene-C surfaces. Langmuir 23:11718–11725CrossRefGoogle Scholar
  4. Cheng M-Y, Park W-T, Yu A, Xue R-F, Tan K, Yu D, Lee S-H, Gan C, Je M (2013) A flexible polyimide cable for implantable neural probe arrays. Microsyst Technol 19:1111–1118CrossRefGoogle Scholar
  5. Cheung KC (2007) Implantable microscale neural interfaces. Biomed Microdev 9:923–938CrossRefGoogle Scholar
  6. Cheung KC, Renaud P, Tanila H, Djupsund K (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22:1783–1790CrossRefGoogle Scholar
  7. Fontanini A, Spano P, Bower JM (2003) Ketamine-xylazine-induced slow (<1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci 23:7993–8001Google Scholar
  8. Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci Polym Phys 49:18–33CrossRefGoogle Scholar
  9. Heim M, Yvert B, Kuhn A (2012) Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation. J Physiol Paris 106:137–145CrossRefGoogle Scholar
  10. Kawano T, Harimoto T, Ishihara A, Takei K, Kawashima T, Usui S, Ishida M (2010) Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor–liquid–solid growth. Biosens Bioelectron 25:1809–1815CrossRefGoogle Scholar
  11. Keene DL, Whiting S, Ventureyra EC (2000) Electrocorticography. Epileptic Disord 2:57–63Google Scholar
  12. Kibler AB, Jamieson BG, Durand DM (2012) A high aspect ratio microelectrode array for mapping neural activity in vitro. J Neurosci Methods 204:296–305CrossRefGoogle Scholar
  13. Lin C-W, Lee Y-T, Chang C-W, Hsu W-L, Chang Y-C, Fang W (2009) Novel glass microprobe arrays for neural recording. Biosens Bioelectron 25:475–481CrossRefGoogle Scholar
  14. Márton G, Fekete Z, Fiáth R, Baracskay P, Ulbert I, Juhász G, Battistig G, Pongrácz A (2013) In vivo measurements with robust silicon-based multielectrode arrays with extreme shaft lengths. IEEE Sens J 13:3263–3269CrossRefGoogle Scholar
  15. Márton G, Bakos I, Fekete Z, Ulbert I, Pongracz A (2014) Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings. J Mater Sci Mater Med 25:931–940CrossRefGoogle Scholar
  16. McCarthy PT, Otto KJ, Rao MP (2011) Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomed Microdev 13:503–515CrossRefGoogle Scholar
  17. Myllymaa S, Myllymaa K, Korhonen H, Töyräs J, Jääskeläinen JE, Djupsund K, Tanila H, Lappalainen R (2009) Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials. Biosens Bioelectron 24:3067–3072CrossRefGoogle Scholar
  18. Nemani KV, Moodie KL, Brennick JB, Su A, Gimi B (2013) In vitro and in vivo evaluation of SU-8 biocompatibility. Math Sci Eng C 33:4453–4459CrossRefGoogle Scholar
  19. Ochoa M, Wei P, Wolley AJ, Otto KJ, Ziaie B (2013) A hybrid PDMS-Parylene subdural multi-electrode array. Biomed Microdev 15:437–443CrossRefGoogle Scholar
  20. Patrick E, Ordonez M, Alba N, Sanchez JC, Nishida T (2006) Design and fabrication of a flexible substrate microelectrode array for brain machine interfaces. Conf Proc IEEE Eng Med Biol Soc 1:2966–2969CrossRefGoogle Scholar
  21. Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates: compact, 6th edn. Academic Press, New YorkGoogle Scholar
  22. Pongrácz A, Fekete Z, Márton G, Bérces Z, Ulbert I, Fürjes P (2013) Deep-brain silicon multielectrodes for simultaneous in vivo neural recording and drug delivery. Sens Actuators B Chem 189:97–105CrossRefGoogle Scholar
  23. Rodriguez FJ, Ceballos D, Schuttler M, Valero A, Valderrama E, Stieglitz T, Navarro X (2000) Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods 98:105–118CrossRefGoogle Scholar
  24. Rousche PJ, Pellinen DS, Pivin DP Jr, Williams JC, Vetter RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng 48:361–371CrossRefGoogle Scholar
  25. Rousseau L, Lissorgues G, Verjus F, Yvert B (2009) Microfabrication of high-density microelectrode arrays for in vitro applications. In: Lim C, Goh JH (eds) 13th International Conference on Biomedical Engineering, pp 790–793Google Scholar
  26. Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T (2009) A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng 6:1741–2560CrossRefGoogle Scholar
  27. Rui Y, Liu J, Wang Y, Yang C (2011) Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17:437–442CrossRefGoogle Scholar
  28. Seymour JP, Langhals NB, Anderson DJ, Kipke DR (2011) Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed Microdev 13:441–451CrossRefGoogle Scholar
  29. Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265Google Scholar
  30. Stieglitz T, Beutel H, Meyer JU (1997) A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sens Actuators A Phys 60:240–243CrossRefGoogle Scholar
  31. Ulbert I, Halgren E, Heit G, Karmos G (2001) Multiple microelectrode-recording system for human intracortical applications. J Neurosci Methods 106:69–79CrossRefGoogle Scholar
  32. Yeager JD, Phillips DJ, Rector DM, Bahr DF (2008) Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods 173:279–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gergely Márton
    • 1
    • 2
    • 3
    Email author
  • Marcell Kiss
    • 2
  • Gábor Orbán
    • 2
  • Anita Pongrácz
    • 2
  • István Ulbert
    • 1
    • 4
  1. 1.Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  2. 2.Department of Microtechnology, Institute for Technical Physics and Materials Science, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  3. 3.School of Ph.D. StudiesSemmelweis UniversityBudapestHungary
  4. 4.Faculty of Information Technology and BionicsPázmány Péter Catholic UniversityBudapestHungary

Personalised recommendations