Advertisement

Microsystem Technologies

, Volume 20, Issue 6, pp 1041–1050 | Cite as

Numerical characterization and experimental verification of an in-plane MEMS-actuator with thin-film aluminum heater

  • Peter Meszmer
  • Karla Hiller
  • Steffen Hartmann
  • Alexey Shaporin
  • Daniel May
  • Raul David Rodriguez
  • Jörg Arnold
  • Gianina Schondelmaier
  • Jan Mehner
  • Dietrich R. T. Zahn
  • Bernhard Wunderle
Review Paper

Abstract

In this paper, a novel concept of a thermo-mechanical MEMS actuator using aluminum thin-film heaters on a thermal oxide for electrical insulation is presented. The actuator is part of an universal tensile testing platform for thermo-mechanical material characterization of one dimensional materials on a micro- and nano-scopic scale under different environmental conditions, as varying temperatures, pressure, moisture or even vacuum and is realised in BDRIE technology. It is shown, that the actuator concept fulfills the requirements for the use in a tensile loading stage along with heterogeneously integrated nanofunctional elements, following a specimen centered approach in line with bottom-up self-assembly processes. Simulation and experiment agree very well in the thermal and mechanical domain and allow subsequent optimisation of the actuator performance.

Keywords

Digital Image Correlation Finite Element Simulation Lateral Displacement Testing Platform Bulk Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank the Fraunhofer ENAS for providing the device used for the white light interferometry and Marco Meinig, who supported the authors during the work at the device. Finally the authors wish to thank the Deutsche Forschungsgemeinschaft, DFG, for the financial support within the research unit 1713 “Sensoric Micro- and Nanosystems”.

References

  1. Agrawal R, Loh O, Espinosa HD (2011) The evolving role of experimental mechanics in 1-D nanostructure-based device development. Exp Mech 51(1):1–9CrossRefGoogle Scholar
  2. Böttner S, Li S, Jorgensen MR, Schmidt OG (2013) Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration. Appl Phys Lett 102Google Scholar
  3. Dienel M (2009) Entwicklung und Analyse von Arrays mikromechanischer Beschleunigungssensoren. PhD thesis, Technische Universität ChemnitzGoogle Scholar
  4. Durix L, Dressler M, Coutellier D, Wunderle B (2012) On the development of a modified button shear specimen to characterize the mixed mode delamination toughness. Eng Fract Mech 84:25–40CrossRefGoogle Scholar
  5. Hiller K, Hahn S, Küchler M, Billep D, Forke R, Geßner T, Köhler D, Konietzka S, Pohle A (2013) Erweiterungen und anwendungen der bdrie-technologie zur herstellung hermetisch gekapselter sensoren mit hoher güte. In Mikrosystemtechnik 2013 - Von Bauelementen zu SystemenGoogle Scholar
  6. Hiller K, Kuechler M, Billep D, Schroeter B, Dienel M, Scheibner D, Gessner T (2005) Bonding and deep rie: a powerful combination for high-aspect-ratio sensors and actuators. Proc SPIE 5715:80–91CrossRefGoogle Scholar
  7. Hölck O, Bauer J, Wittler O, Michel B, Wunderle B (2012) Comparative characterization of chip to epoxy interfaces by molecular modeling and contact angle determination. J. Microelectron Reliab 52(7):1285–1290CrossRefGoogle Scholar
  8. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  9. Jonsmann J, Sigmund O, Bouwstra S (1999) Compliant electro-thermal microactuatorsGoogle Scholar
  10. Mankame ND, Ananthasuresh GK (2001) Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator. J Micromech Microeng 11(5):452CrossRefGoogle Scholar
  11. Riethmueller W, Benecke W (1988) Thermally excited silicon microactuators. IEEE Trans Electron Devices 35(6):758–763CrossRefGoogle Scholar
  12. Rodriguez RD, Sheremet E, Thurmer DJ, Lehmann D, Gordan OD, Seidel F, Milekhin A, Schmidt OG, Hietschold M, Zahn DRT (2012) Temperature-dependent raman investigation of rolled up ingaas/gaas microtubes. Nanoscale Res Lett 7(1):594CrossRefGoogle Scholar
  13. Schondelmaier G, Hartmann S, May D, Shaporin A, Voigt S, Rodriguez RD, Gordan OD, Zahn DRT, Mehner J, Hiller K, Wunderle B (2013) Piezoresistive force sensor and thermal actuators usage as applications to nanosystems manipulation: design, simulations, technology and experiments. In: 14th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), pp 1–6Google Scholar
  14. Sun Y, Nelson BJ, Potasek DP, Enikov E (2002) A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives. J Micromech Microeng 12(6):832–840CrossRefGoogle Scholar
  15. Wu Y, Huang M, Wang F, Huang XMH, Rosenblatt S, Huang L, Yan H, O’Brien SP, Hone J, Heinz TF (2008) Determination of the young’s modulus of structurally defined carbon nanotubes. Nano Lett 8:4158–4161CrossRefGoogle Scholar
  16. Wunderle B, Michel B (2009) Lifetime modeling for microsystems integration - from nano to systems. J Microsyst Technol 15(6):799–813CrossRefGoogle Scholar
  17. Wunderle B, Schulz M, Keller J, May D, Maus I, Pape H, Michel B (2012) Advanced mixed-mode bending test: A rapid, inexpensive and accurate method for fracture-mechanical interface characterisation. In: 2012 13th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE) , pp 1–11Google Scholar
  18. Yu HB, Hermann S, Dong Z, Mai JB, Li WJ, Schulz SE (2013) Controlling SWCNT assembling density by electrokinetics. Sens Actuators A Phys 201:36–42CrossRefGoogle Scholar
  19. Yu HB, Hermann S, Schulz SE, Geßner T, Dong Z, Li WJ (2012) Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem Phys 408:11–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter Meszmer
    • 1
  • Karla Hiller
    • 2
  • Steffen Hartmann
    • 1
  • Alexey Shaporin
    • 3
  • Daniel May
    • 1
  • Raul David Rodriguez
    • 4
  • Jörg Arnold
    • 1
  • Gianina Schondelmaier
    • 5
  • Jan Mehner
    • 3
  • Dietrich R. T. Zahn
    • 4
  • Bernhard Wunderle
    • 1
  1. 1.Faculty for Electrical Engineering and Information Technologies, Chair Materials and Reliability of MicrosystemsTechnische Universität ChemnitzChemnitzGermany
  2. 2.Center for Microtechnologies ZfMTechnische Universität ChemnitzChemnitzGermany
  3. 3.Faculty for Electrical Engineering and Information Technologies, Chair of Microsystems and Precision EngineeringTechnische Universität ChemnitzChemnitzGermany
  4. 4.Faculty of Natural Science, Institute of Physics, Chair Semiconductor PhysicsTechnische Universität ChemnitzChemnitzGermany
  5. 5.ZwickauGermany

Personalised recommendations