Microsystem Technologies

, Volume 21, Issue 3, pp 581–590 | Cite as

PDMS microfluidics developed for polymer based photonic biosensors

  • P. Fürjes
  • E. G. Holczer
  • E. Tóth
  • K. Iván
  • Z. Fekete
  • D. Bernier
  • F. Dortu
  • D. Giannone
Technical Paper


In this work, advances in the fabrication technology and functional analysis of a polymer microfluidic system—as a significant part of a developed polymer photonic biosensor—are reported. Robust and cost-effective microfluidics in PDMS including sample preparation functions is designed and realized by using SU-8 moulding replica. Surface modification strategies using Triton X-100 and PDMS-PEO and their effect on device sealing and non-specific protein adsorption are investigated by contact angle measurement and in situ fluorescence microscopy.


Contact Angle Human Serum Albumin PDMS Polyimide Water Contact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The supports of the European Commission through the seventh framework program FP7-ICT4-P3SENS (248304) and the János Bolyai fellowship of the Hungarian Academy of Sciences (recipient: Péter Fürjes), also the support of the grants TÁMOP-4.2.1.B-11/2/KMR-2011-0002 and TÁMOP-4.2.2/B-10/1-2010-0014 is acknowledged. The significant efforts of M. Erős and M. Payer in microtechnology are gratefully acknowledged.


  1. Bhattacharya S, Gao Y, Korampally V, Othman MT, Grant SA, Gangopadhyay K, Gangopadhyay S (2007) Mechanics of plasma exposed spin-on-glass (SOG) and polydimethyl siloxane (PDMS) surfaces and their impact on bond strength. Appl Surf Sci 250:4220–4225CrossRefGoogle Scholar
  2. Cartwright JHE, Feingold M, Piro O (1999) An introduction to chaotic advection. NATO ASI Ser B Phys 373:307–342CrossRefGoogle Scholar
  3. Chua VP, Fringer OB (2010) Assessing the effects of numerical diffusion in a three-dimensional unstructured-grid model of a periodically-stratified estuary. International workshop on multiscale un-structured mesh numerical ocean modeling, CambridgeGoogle Scholar
  4. Cooper McDonald J, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40CrossRefGoogle Scholar
  5. COMSOL Multiphyics. Accessed 1 April 2014
  6. Cytec Industries Inc., Accessed 1 April 2014
  7. de Mello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402CrossRefGoogle Scholar
  8. del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography—TOPICAL REVIEW. J Micromechanics Microengineering 17:R81–R95CrossRefGoogle Scholar
  9. Dow Corning Corp. Accessed 1 April 2014
  10. Evonik Fibres GmbH. Accessed 1 April 2014
  11. FP7 Framework Programme of European Commission: P3SENS, Polymer Photonic multiparametric SENSor for Point-of-care diagnostics. Accessed 1 April 2014
  12. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26CrossRefGoogle Scholar
  13. Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(2):026502CrossRefGoogle Scholar
  14. Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9:3330–3337CrossRefGoogle Scholar
  15. Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19(4):495–513CrossRefGoogle Scholar
  16. Holczer E, Fekete Z, Fürjes P (2013) Surface modification of PDMS based microfluidic systems by tensides. Mater Sci Forum 729:361–366CrossRefGoogle Scholar
  17. Kim J, Chaudhury MK, Owen MJ (2001) The mechanism of hydrophobic recovery of PDMS elastomers exposed to partial electrical discharges. J Colloid Interface Sci 244:200–207CrossRefGoogle Scholar
  18. Li Pengfei, Lei Nan, Sheadel Debra A, Xu Jie, Xue Wei (2012) Integration of nanosensors into a sealed microchannel in a hybrid lab-on-a-chip device. Sensors Actuators B 166:870–877CrossRefGoogle Scholar
  19. Mata A, Fleischman AJ, Roy S (2005) Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7(4):281–293CrossRefGoogle Scholar
  20. Mata A, Fleischman AJ, Roy S (2006) Fabrication of multi-layer SU-8 Microstructures. J Micromechanics Microengineering 16:276–284CrossRefGoogle Scholar
  21. MicroChem Corp. Accessed 1 April 2014
  22. Mukhopadhyay R (2007) When PDMS isn’t the best. Anal Chem 79(9):3249–3252Google Scholar
  23. National Institute of Health, US Department Of Health and Human Services. Accessed 1 April 2014
  24. Nguyen N-T, Wereley ST (2006). Fundamentals and applications of microfluidics. Artech HouseGoogle Scholar
  25. Nguyen N-T (2008) Micromixers: fundamentals, design and fabrication. William Andrew, NorwichGoogle Scholar
  26. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576CrossRefGoogle Scholar
  27. Seo J, Lee LP (2006) Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsiloxane (PDMS). Sensors Actuators B 119:192–198CrossRefGoogle Scholar
  28. Sunkara Vijaya, Park Dong-Kyu, Hwang Hyundoo, Chantiwas Rattikan, Soper Steven A, Choa Yoon-Kyoung (2011) Simple room temperature bonding of thermoplastics and poly (dimethylsiloxane). Lab Chip 11:962–965CrossRefGoogle Scholar
  29. Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–650CrossRefGoogle Scholar
  30. Sui G, Wang J, Lee C-C, Lu W, Lee SP, Leyton JV, Wu AM (2006) Solution phase surface modification in intact PDMS microfluidic channels. Anal Chem 78:5543–5551CrossRefGoogle Scholar
  31. Ray S, Jaipal Reddy P, Choudhary S, Raghu D, Srivastava S (2011) Emerging nanoproteomics approaches for disease biomarker detection: a current perspective. J Proteomics 74:2660–2681CrossRefGoogle Scholar
  32. TX-100: T8787—CAS Number: 9002-93-1, PDMS-PEO: 482412—CAS Number 68938-54-5. Accessed 1 April 2014
  33. Talaei S, Frey O, van der Wal PD, de Rooij NF, Koudelka-Hep M (2009) Hybrid microfluidic cartridge formed by irreversible bonding of SU-8 and PDMS for multi-layer flow applications. Procedia Chem 1:381–384CrossRefGoogle Scholar
  34. Yao M, Fang J (2012) Hydrophilic PEO-PDMS for microfluidic applications. J Micromechanics Microengineering 22(2):025012CrossRefMathSciNetGoogle Scholar
  35. Zhao J, Sheadel DA, Xue W (2012) Surface treatment of polymers for the fabrication of all-polymer MEMS devices. Sensors Actuators A 187:43–49CrossRefGoogle Scholar
  36. Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31(1):2–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Fürjes
    • 1
  • E. G. Holczer
    • 1
  • E. Tóth
    • 2
  • K. Iván
    • 2
  • Z. Fekete
    • 1
  • D. Bernier
    • 3
  • F. Dortu
    • 3
  • D. Giannone
    • 3
  1. 1.Institute for Technical Physics and Materials ScienceResearch Centre for Natural SciencesBudapestHungary
  2. 2.Faculty of Information Technology and BionicsPázmány Péter Catholic UniversityBudapestHungary
  3. 3.Multitel asblMonsBelgium

Personalised recommendations