Advertisement

Microsystem Technologies

, Volume 21, Issue 9, pp 1903–1913 | Cite as

Reliability of RF MEMS capacitive and ohmic switches for space redundancy configurations

  • Andrea Lucibello
  • Romolo MarcelliEmail author
  • Emanuela Proietti
  • Giancarlo Bartolucci
  • Viviana Mulloni
  • Benno Margesin
Technical Paper

Abstract

In this paper Radio Frequency micro-electromechanical system (RF MEMS) switches in coplanar waveguide configuration designed for redundancy space applications have been analyzed within an European Space Agency contract, to demonstrate their reliability in terms of microwave performances when subjected to DC actuations up to one million cycles. The experimental results obtained by means of on-wafer measurements on shunt capacitive and ohmic series RF-MEMS single-pole-single-throw (SPST) switches demonstrate isolation and insertion loss better than −20 and −0.4 dB respectively after 106 cycles, up to a frequency of 20 GHz, making them suitable for space reliable applications. Based on these building blocks, two configurations of SPDT switches making use of the developed SPST devices have been fabricated and experimentally investigated. Both the topologies exhibit good performances in terms of transmission and isolation parameters, fulfilling the mechanical requirements expected for redundancy logic purposes. Preference for the SPDT based on two shunt capacitive RF MEMS switches is obtained, in agreement with the proposed space application.

Keywords

Actuation Voltage Device Under Test Radio Frequency Signal Capacitive Switch Single Pole Double Throw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work partially funded by the ESA Project AO/1-5288/06/NL/GLC on “High Reliability MEMS Redundancy Switch”.

References

  1. Blondy P et al (2004) Dielectric less capacitive MEMS switches. In: Proceedings IEEE MTT-S international microwave symposium, Fort Worth, pp 573–576. doi: 10.1109/MWSYM.2004.1336046
  2. Bartolucci G, De Angelis G, Lucibello A, Marcelli R, Proietti E (2012) Analytic modeling of RF MEMS shunt connected capacitive switches. J Electromagn Waves Appl 26(8–9):1168–1179. doi: 10.1080/09205071.2012.710564. ISSN: 0920-5071Google Scholar
  3. De Angelis G, Lucibello A, Proietti E, Marcelli R, Bartolucci G, Casini F, Farinelli P, Mannocchi G, Di Nardo S, Pochesci D, Margesin B, Giacomozzi F, Vendier O, Kim T, Vietzorreck L (2012) RF MEMS ohmic switches for matrix configurations. Int J Microw Wirel Technol 4:421–433. doi: 10.1017/S1759078712000074 CrossRefGoogle Scholar
  4. Giacomozzi F, Mulloni V, Colpo S, Iannacci J, Margesin B, Faes A (2011) A flexible fabrication process for RF-MEMS devices. Rom J Inf Sci Technol 14(3):259–268Google Scholar
  5. Li X, Gu L, Wu Z (2008) High-performance RF passives using post-CMOS MEMS techniques for RF SoC. In: Proceedings of radio frequency integrated circuits symposium, Atlanta, pp 163–166. doi: 10.1109/RFIC.2008.4561409
  6. Marcelli R, Papaioannou G, Catoni S, De Angelis G, Lucibello A, Proietti E, Margesin B, Giacomozzi F, Deborgies F (2009) Dielectric charging in microwave micro-electro-mechanical ohmic series and capacitive shunt switches. J Appl Phys 105:114514-1–114514-10. doi: 10.1063/1.3143026 CrossRefGoogle Scholar
  7. Marcelli R, Bartolucci G, Papaioannou G, De Angelis G, Lucibello A, Proietti E, Margesin B, Giacomozzi F, Deborgies F (2010) Reliability of RF MEMS switches due to charging effects and their circuital modelling. Microsyst Technol 16:1111–1118. doi: 10.1007/s00542-009-1006-z CrossRefGoogle Scholar
  8. Marcelli R, Comastri D, Lucibello A, De Angelis G, Proietti E, Bartolucci G (2012) Dynamics of RF micro-mechanical capacitive shunt switches in coplanar waveguide configuration. In: Nazmul I (ed) Microelectromechanical systems and devices. InTech Publisher, Rijeka, pp 193–232. doi: 10.5772/28251
  9. Marcelli R, Lucibello A, De Angelis G, Proietti E, Papaioannou G, Bartolucci G, Giacomozzi F, Margesin B (2012) Characterization and modeling of charging effects in dielectrics for the actuation of RF MEMS ohmic series and capacitive shunt switches. In: Nazmul I (ed) Microelectromechanical systems and devices. InTech Publisher, Rijeka, pp 233–268. doi: 10.5772/29299
  10. Newman H, Ebel J, Judy D, Maciel J (2008) Lifetime measurements on a high-reliability RF-MEMS contact switch. IEEE Microwave Wirel Compon Lett 18:100–102. doi: 10.1109/LMWC.2007.915037 CrossRefGoogle Scholar
  11. Persano A, Tazzoli A, Cola A, Siciliano P, Meneghesso G, Quaranta F (2012) Reliability enhancement by suitable actuation waveforms for capacitive RF MEMS switches in III–V technology. J Microelectromech Syst 21:414–419CrossRefGoogle Scholar
  12. Plana R (2006) What’s hot in RF components and systems. Microw J 49(2):22–28Google Scholar
  13. Rebeiz GM (2003) RF MEMS theory, design, and technology. Wiley, New JerseyGoogle Scholar
  14. Senturia SD (2001) Microsystem design. Springer Science, New YorkGoogle Scholar
  15. Zhang Z, Liao X, Han L, Su S (2009) A GaAs MMIC-based inline RF MEMS power sensor. In: Proceedings of IEEE SENSORS 2009 conference, Christchurch, pp 1705–1708. doi: 10.1109/ICSENS.2009.5398504
  16. Zunino JL et al (2005) Micro-electromechanical systems (MEMS) reliability assessment program for Department of Defense Activities. In: Proceedings of the 2005 NSTI nanotechnology conference and trade show (Nanotech)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrea Lucibello
    • 1
  • Romolo Marcelli
    • 1
    Email author
  • Emanuela Proietti
    • 1
  • Giancarlo Bartolucci
    • 1
    • 2
  • Viviana Mulloni
    • 3
  • Benno Margesin
    • 3
  1. 1.CNR-IMM RomaRomeItaly
  2. 2.Department of Electronic EngineeringUniversity of Roma “Tor Vergata”RomeItaly
  3. 3.Fondazione B. KesslerTrentoItaly

Personalised recommendations