Microsystem Technologies

, Volume 20, Issue 4–5, pp 971–988

Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform

  • Giorgos Fagas
  • Michael Nolan
  • Yordan M. Georgiev
  • Ran Yu
  • Olan Lotty
  • Nikolay Petkov
  • Justin D. Holmes
  • Guobin Jia
  • Björn Eisenhawer
  • Annett Gawlik
  • Fritz Falk
  • Naser Khosropour
  • Elizabeth Buitrago
  • Montserrat Fernández-Bolaños Badia
  • Francois Krummenacher
  • Adrian M. Ionescu
  • Maher Kayal
  • Adrian M. Nightingale
  • John C. de Mello
  • Erik Puik
  • Franc van der Bent
  • Rik Lafeber
  • Rajesh Ramaneti
  • Hien Duy Tong
  • Cees van Rijn
Technical Paper
  • 299 Downloads

Abstract

We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials platform, namely, nanowires, enables us to fabricate state-of-the-art components at reduced volume and show chemical sensing within the available energy budget. We demonstrate a photovoltaic mini-module made of silicon nanowire solar cells, each of 0.5 mm2 area, which delivers a power of 260 μW and an open circuit voltage of 2 V at one sun illumination. Using nanowire platforms two sensing applications are presented. Combining functionalised suspended Si nanowires with a novel microfluidic fluid delivery system, fully integrated microfluidic–sensor devices are examined as sensors for streptavidin and pH, whereas, using a microchip modified with Pd nanowires provides a power efficient and fast early hydrogen gas detection method. Finally, an ultra-low power, efficient solar energy harvesting and sensing microsystem augmented with a 6 mAh rechargeable battery allows for less than 20 μW power consumption and 425 h sensor operation even without energy harvesting.

References

  1. Barton J, Harte S, Jung E (2008) Distributed, embedded sensor and actuator platforms. In: Delaney K (ed) Augmented materials and smart objects: building ambient intelligence through microsystems technology. Springer Science + Business Media, New York, pp 105–129Google Scholar
  2. Von Lewis FA (1967) The palladium hydrogen system. Academic Press, London-New York. 1. Aufl., XII, 178 S., zahlr. Abb., geb. 45 sGoogle Scholar
  3. Buitrago E, Fernández-Bolaños M, Ionescu AM (2012) Vertically stacked Si nanostructures for biosensing applications. Microelectron Eng 97:345–348CrossRefGoogle Scholar
  4. Buitrago E, Fagas G, Badia MF-B, Georgiev YM, Berthomé M, Ionescu AM (2013a) Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens Actuators B 183:1–10CrossRefGoogle Scholar
  5. Buitrago E, Badia MF-B, Georgiev YM, Yu R, Lotty O, Holmes JD, Nightingale AM, Ionescu AM (2013b) Functionalised 3D 7×20 array of vertically stacked SiNW FETs for streptavidin sensing. In: 71st annual device research conference (DRC), Notre Dame, INGoogle Scholar
  6. Chen Y, Wang X, Erramilli S, Mohanty P, Kalinowski A (2006) Silicon based nanoelectronic field-effect pH sensor with local gate control. Appl Phys Lett 89(22):223512/1–223512/3Google Scholar
  7. Chen G, Ghaed H, Haque R, Wieckowski M, Yejoong K, Gyouho K, Fick D, Daeyeon K, Mingoo S, Wise K, Blaauw D, Sylvester D (2011) A cubic-millimeter energy-autonomous wireless intraocular pressure monitor. In: Proceedings of the IEEE international solid-state circuits conference, San Francisco, CA, USA, pp 310–312Google Scholar
  8. Conibeer G (2007) Third-generation photovoltaics. Mater Today 10(11):42–50CrossRefGoogle Scholar
  9. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853CrossRefGoogle Scholar
  10. Cui Y, Wei Q, Park H, Lieber C (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292CrossRefGoogle Scholar
  11. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984CrossRefGoogle Scholar
  12. Fasoli A, Milne WI (2012) Overview and status of bottom-up silicon nanowire electronics. Mat Sci Sem Proc 15(6):601–614CrossRefGoogle Scholar
  13. Flanagan TB, Oates WA (1991) The palladium-hydrogen system. Annu Rev Mater Sci 21(1):269–304CrossRefGoogle Scholar
  14. Georgiev YM, Yu R, Petkov N, Lotty O, Nightingale AM, deMello JC, Duffy R, Holmes JD (2013) Silicon and germanium junctionless nanowire transistors for sensing and digital electronics applications. In: Nazarov A, Balestra F, Flandre D, Kilchytska V (eds) Functional nanomaterials and devices for electronics, sensors and energy harvesting. Springer, BerlinGoogle Scholar
  15. Gislason D (2008) ZigBee wireless networking. Newnes Publications, LondonGoogle Scholar
  16. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Solar cell efficiency tables. Prog Photovolt Res Appl 20(5):606–614CrossRefGoogle Scholar
  17. Hübert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors—a review. Sens Actuators B Chem 157(2):329–352CrossRefGoogle Scholar
  18. Hughes RC, Schubert WK (1992) Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J Appl Phys 71(1):542–544CrossRefGoogle Scholar
  19. Imote2 Datasheet (2009) High-performance wireless sensor network node. http://www.xbow.com. Accessed 25 Dec 2012
  20. Jia G, Eisenhawer B, Dellith J, Falk F, Thøgersen A, Ulyashin A (2013) Multiple core-shell silicon nanowire-based heterojunction solar cells. J Phys Chem C 117(2):1091–1096CrossRefGoogle Scholar
  21. Khosro Pour N, Krummenacher F, Kayal M (2012) Fully integrated ultra-low power management system for micro-power solar energy harvesting applications. Electron Lett 48(6):338–339CrossRefGoogle Scholar
  22. Khosro Pour N, Kayal M, Jia G, Eisenhawer B, Falk F, Nightingale A, DeMello JC, Georgiev YM, Petkov N, Holmes JD, Nolan M, Fagas G (2013a) A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote. SPIE Proc 8763. doi:10.1117/12.2017520
  23. Khosro Pour N, Krummenacher F, Kayal M (2013b) Fully integrated solar energy harvester and sensor interface circuits for energy-efficient wireless sensing applications. J Low Power Electron Appl 3(1):9–26CrossRefGoogle Scholar
  24. Lu C, Raghunathan V, Roy K (2010) Maximum power point considerations in micro-scale solar energy harvesting systems. In: Proceedings of IEEE international symposium on circuits and systems (ISCAS), Paris, France, pp 273–276Google Scholar
  25. Lundstrom KI, Shivaraman MS, Svensson CM (1975) A hydrogen-sensitive Pd-gate MOS transistor. J Appl Phys 46(9):3876–3881CrossRefGoogle Scholar
  26. Markus J, Silva J, Temes GC (2004) Theory and applications of incremental ΔΣ converters. IEEE Trans Circuits Syst I Regul Pap 51(4):678–690CrossRefGoogle Scholar
  27. Mishima T, Taguchi M, Sakata H, Maruyama E (2011) Development status of high-efficiency HIT solar cells. Sol Energy Mater Sol Cells 95:18–21CrossRefGoogle Scholar
  28. Nair PR, Alam MA (2007) Design considerations of silicon nanowire biosensors. IEEE Trans Electron Device 54(12):3400–3408CrossRefGoogle Scholar
  29. Ng RMY, Tao W, Mansun C (2007) A new approach to fabricate vertically stacked single-crystalline silicon nanowires. In: Electron devices and solid-state circuits EDSSC, Tainan, pp 133–136Google Scholar
  30. Ng RMY, Wang T, Liu F, Zuo X, He J, Chan MS (2009) Vertically stacked silicon nanowire transistors fabricated by inductive plasma etching and stress-limited oxidation. IEEE Electron Device Lett 30(5):520–522CrossRefGoogle Scholar
  31. Ó Mathúna C, O’Donnell T, Martinez-Catala RV, Rohan J, O’Flynn B (2008) Energy scavenging for long-term deployable wireless sensor networks. Talanta 75(3):613–623CrossRefGoogle Scholar
  32. Offermans P, Tong HD, Van Rijn CJM, Merken P, Brongersma SH, Crego-Calama M (2009) Ultralow-power hydrogen sensing with single palladium nanowires. Appl Phys Lett 94(22):223110/1–223110/3CrossRefGoogle Scholar
  33. Park I, Li Z, Li X, Pisano AP, Williams RS (2007) Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosens Bioelectron 22(9–10):2065–2070CrossRefGoogle Scholar
  34. Park I, Li Z, Pisano AP, Williams RS (2010) Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 21(1):015501/1–015501/9Google Scholar
  35. Patolsky F, Zheng G, Lieber CM (2006) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 1(4):1711–1724CrossRefGoogle Scholar
  36. Penders J, Gyselinckx B, Vullers R, De Nil M, Nimmala S, Van de Molengraft J, Yazicioglu R, Torfs T, Leonov V, Merken P, Van Hoof C (2008) Human++: from technology to emerging health monitoring concepts. In: Proceedings of the 5th international workshop wearable and implantable body sensor networks, pp 94–98Google Scholar
  37. Peng K-Q, Lee S-T (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23(2):198–215CrossRefGoogle Scholar
  38. Peng KQ, Yan YJ, Gao S-P, Zhu J (2001) Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14(16):1164–1167CrossRefGoogle Scholar
  39. Qiu Y, Liempd CV, Veld BOH, Blanken PG, Hoof CV (2011) 5 μW-to-10 mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm. In: Proceedings of the IEEE international solid-state circuits conference, San Francisco, USA, pp 118–120Google Scholar
  40. Satyanarayana S, Karnik RN, Majumdar A (2005) Stamp-and-stick room-temperature bonding technique for microdevices. J Microelectromech Syst 14(2):392–399CrossRefGoogle Scholar
  41. SiNAPS, Semiconducting Nanowire Platform for Autonomous Sensor. https://www.sinaps-fet.eu. Accessed 29 Mar 2013
  42. Song T, Lee S-T, Sun B (2012) Silicon nanowires for photovoltaic applications: the progress and challenge. Nano Energy 1(5):654–673CrossRefGoogle Scholar
  43. Steglich M, Bingel A, Jia G, Falk F (2012) Atomic layer deposited ZnO:Al for nanostructured silicon heterojunction solar cells. Sol Energy Mater Sol Cells 103:62–68CrossRefGoogle Scholar
  44. Tong HD, Chen S, van der Wiel WG, Carlen ET, van den Berg A (2009) Novel top-down wafer-scale fabrication of single crystal silicon nanowires. Nano Lett 9(3):1015–1022CrossRefGoogle Scholar
  45. Tong HD, Tran PD, Pham XTT, Pham VB, Le TTT, Dang MC, Van Rijn CJM (2010) The nanofabrication of Pt nanowire arrays at the wafer scale and its application in glucose detection. Adv Nat Sci Nanosci Nanotechnol 1(1):015011/1–015011/4CrossRefGoogle Scholar
  46. Toumaz TZ1053 Datasheet. http://www.toumaz.com/page.php?page=telran. 25 December 2012
  47. Van der Bent JF, Van Rijn CJM (2010) Ultra low power temperature compensation method for palladium nanowire grid. Procedia Eng 5:184–187CrossRefGoogle Scholar
  48. Vullers RJM, Schaijk RV, Visser HJ, Penders J, Hoof CV (2010) Energy harvesting for autonomous wireless sensor networks. IEEE Solid State Circuit Mag 2(2):29–38CrossRefGoogle Scholar
  49. Varta V6HR Datasheet. Available online: http://www.varta-microbattery.com. Accessed 10 Mar 2013
  50. Zarlink ZL70250 Datasheet. http://www.zarlink.com/zarlink. 25 December 2012

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Giorgos Fagas
    • 1
  • Michael Nolan
    • 1
  • Yordan M. Georgiev
    • 1
  • Ran Yu
    • 1
  • Olan Lotty
    • 1
  • Nikolay Petkov
    • 1
  • Justin D. Holmes
    • 1
  • Guobin Jia
    • 2
  • Björn Eisenhawer
    • 2
  • Annett Gawlik
    • 2
  • Fritz Falk
    • 2
  • Naser Khosropour
    • 3
  • Elizabeth Buitrago
    • 3
  • Montserrat Fernández-Bolaños Badia
    • 3
  • Francois Krummenacher
    • 3
  • Adrian M. Ionescu
    • 3
  • Maher Kayal
    • 3
  • Adrian M. Nightingale
    • 4
  • John C. de Mello
    • 4
  • Erik Puik
    • 5
  • Franc van der Bent
    • 5
  • Rik Lafeber
    • 5
  • Rajesh Ramaneti
    • 5
  • Hien Duy Tong
    • 5
  • Cees van Rijn
    • 5
  1. 1.Tyndall National InstituteUniversity College CorkCorkIreland
  2. 2.Institute of Photonic TechnologyJenaGermany
  3. 3.Ecole Polytechnique Federal LausanneLausanneSwitzerland
  4. 4.Imperial College LondonLondonUK
  5. 5.Nanosens BVZutphenThe Netherlands

Personalised recommendations