Microsystem Technologies

, Volume 20, Issue 4–5, pp 627–640 | Cite as

Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes

  • J. Iannacci
  • E. Serra
  • R. Di Criscienzo
  • G. Sordo
  • M. Gottardi
  • A. Borrielli
  • M. Bonaldi
  • T. Kuenzig
  • G. Schrag
  • G. Pandraud
  • P. M. Sarro
Technical Paper

Abstract

In this work we discuss a novel design concept of energy harvester (EH), based on Microsystem (MEMS) technology, meant to convert mechanical energy, available in the form of vibrations scattered in the surrounding environment, into electrical energy by means of the piezoelectric conversion principle. The resonant structure, named four-leaf clover (FLC), is circular and based on four petal-like double mass-spring systems, kept suspended through four straight beams anchored to the surrounding Silicon frame. Differently from standard cantilever-type EHs that typically convert energy uniquely in correspondence with the fundamental vibration frequency, this particular shape is aimed to exploit multiple resonant modes and, thereby, to increase the performance and the operation bandwidth of the MEMS device. A preliminary non-optimized design of the FLC is discussed and physical samples of the sole mechanical resonator, fabricated at the DIMES Technology Center (Delft University of Technology, the Netherlands), are experimentally characterized. Their behaviour is compared against simulations performed in ANSYS Workbench™, confirming good accuracy of the predictive method. Furthermore, the electromechanical multiphysical behaviour of the FLC EH is also analysed in Workbench, by adding a layer with piezoelectric conversion properties in the simulation. The measured and simulated data reported in this paper confirm that the MEMS converter exhibits multiple resonant modes in the frequency range below 1 kHz, where most of the environmental vibration energy is scattered, and extracted power levels of 0.2 μW can be achieved as well, in closed-loop conditions. Further developments of this work are expected to fully prove the high-performance of the FLC concept, and are going to be addressed by the authors of this work in the on-going activities.

References

  1. Akiyama M, Kano K, Teshigahara A (2009) Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett 95:3CrossRefGoogle Scholar
  2. Aktakka EE, Peterson RL, Najafi K (2011) Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. Proc. Transducers. 1649–1652Google Scholar
  3. Arakawa Y, Suzuki Y, Kasagi N (2004) Micro seismic power generator using electret polymer film. Proc. PowerMEMS. 187–190Google Scholar
  4. Brennen RA, Pisano AP, Tang WC (1990) Multiple mode micromechanical resonators. Proc. IEEE MEMS. 9–14Google Scholar
  5. Casset F, Durand C, Dedieu S, Carpentier JF, Gonchond JP, Ancey P, Robert P (2009) 3D Multi-Frequency MEMS Electromechanical Resonator Design. Proc. EuroSimE. 1–5Google Scholar
  6. Chamanian S, Bahrami M, Zangabad RP, Khodaei M, Zarbakhsh P (2012) Wideband capacitive energy harvester based on mechanical frequency-up conversion. Proc. IEEE SAS. 1–4Google Scholar
  7. Chandrahalim H, Bhave SA (2008) Digitally-tunable mems filter using mechanically-coupled resonator array. Proc. IEEE MEMS. 1020–1023Google Scholar
  8. Chidambaram N, Mazzalai A, Muralt P (2012) Comparison of lead zirconate titanate (PZT) thin films for MEMS energy harvester with interdigitated and parallel plate electrodes. Proc. ISAF/ECAPD/PFM. 1–4Google Scholar
  9. Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39:3607–3612CrossRefGoogle Scholar
  10. Elfrink R, Matova S, de Nooijer C, Jambunathan M, Goedbloed M, van de Molengraft J, Pop V, Vullers RJM, Renaud M, van Schaijk R (2011) Shock induced energy harvesting with a MEMS harvester for automotive applications. Proc. IEEE IEDM. 29.5.1–29.5.4Google Scholar
  11. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  12. Fu JL, Nakano Y, Sorenson LD, Ayazi F (2012) Multi-axis AlN-on-Silicon vibration energy harvester with integrated frequency-upconverting transducers. Proc. IEEE MEMS. 1269–1272Google Scholar
  13. Galchev T, Aktakka EE, Najafi K (2012) A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. IEEE J MEMS 21:1311–1320CrossRefGoogle Scholar
  14. Goldschmidtboeing F, Wischke M, Eichhorn C, Woias P (2009) Nonlinear effects in piezoelectric vibration harvesters with high coupling factors. Proc. PowerMEMS. 364–367Google Scholar
  15. Hagiwara K, Goto M, Iguchi Y, Tajima T, Yasuno Y, Kodama H, Kidokoro K, Suzuki Y (2012) Electret charging method based on soft X-ray photoionization for MEMS transducers. IEEE Trans Dielectrics Electr Insulation 19:1291–1298Google Scholar
  16. Hajati A, Bathurst SP, Lee HJ, Kim SG (2011) Design and fabrication of a nonlinear resonator for ultra wide-bandwidth energy harvesting applications. Proc. IEEE MEMS. 1301–1304Google Scholar
  17. Halvorsen E (2012) Fundamental issues in nonlinear wide-band vibration energy harvesting. Nonlinear sciences, adaptation and self-organizing systems. doi: 10.1103/PhysRevE.87.042129
  18. Hoffmann D, Folkmer B, Manoli Y (2009) Fabrication, characterization and modelling of electrostatic micro-generators. IOP J Micromech Microeng 19:11Google Scholar
  19. Iannacci J (2010) Mixed-domain fast simulation of RF and microwave MEMS-based complex networks within standard IC development frameworks. In: Zhurbenko V (ed) Advanced microwave circuits and systems, 1st edn. InTech, Rijeka, pp 313–338Google Scholar
  20. Iannacci J (2013a) Compact Modeling of RF MEMS devices. In: Bechtold T, Schrag G, Feng L (eds) System-level modeling of MEMS, vol 10., 1st ednWiley-VCH Books, Weinheim, pp 191–209CrossRefGoogle Scholar
  21. Iannacci J (2013b) Practical Guide to RF–MEMS, 1st edn. Wiley-VCH Books, WeinheimCrossRefGoogle Scholar
  22. Iannacci J, Bartek M, Tian J, Gaddi R, Gnudi A (2008) Electromagnetic Optimisation of an RF-MEMS Wafer-Level Package. Elsevier Sensors and Actuators A: Physical, Special Issue of Eurosensors XX 2006 Conference, 142:434–441Google Scholar
  23. Iannacci J, Repchankova A, Faes A, Tazzoli A, Meneghesso G, Dalla Betta GF (2010a) Enhancement of RF MEMS switch reliability through an active anti-stiction heat-based mechanism. Microelectron Reliab 50:1599–1603CrossRefGoogle Scholar
  24. Iannacci J, Gaddi R, Gnudi A (2010b) Experimental validation of mixed electromechanical and electromagnetic modeling of RF-MEMS devices within a standard IC simulation environment. IEEE J Microelectromech Systems 19:526–537CrossRefGoogle Scholar
  25. Iannacci J, Faes A, Repchankova A, Tazzoli A, Meneghesso G (2011) An active heat-based restoring mechanism for improving the reliability of RF-MEMS switches. Microelectron Reliab 51:1869–1873CrossRefGoogle Scholar
  26. Kamierski TJ, Beeby S (2010) Energy harvesting systems: principles, modeling and applications. Springer, BerlinGoogle Scholar
  27. Koukarenko E, Beeby S, Tudor M, White N, O’Donnell T, Saha T, Kulkani S, Roy S (2006) Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Springer Microsystem Technol J 12:1071–1077CrossRefGoogle Scholar
  28. Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. Proc. ISWC. 132–139Google Scholar
  29. Liu SW, Lye SW, Miao JM (2012) Sandwich structured electrostatic/electrets parallel-plate power generator for low acceleration and low frequency vibration energy harvesting. Proc. IEEE MEMS. 1277–1280Google Scholar
  30. Meirovitch L (2010) Fundamentals of Vibrations. Waveland Press Inc., Long GroveGoogle Scholar
  31. Miki S, Fujita T, Kotoge T, Jiang YG, Uehara M, Kanda K, Higuchi K, Maenaka K (2012) Electromagnetic energy harvester by using buried NdFeB. Proc. IEEE MEMS. 1221–1224Google Scholar
  32. Repchankova A, Iannacci J (2009) Heat-based recovery mechanism to counteract stiction of RF-MEMS switches. Proc. DTIP. 176–181Google Scholar
  33. Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  34. Suzuki M, Matsushita N, Hirata T, Yoneya R, Onishi J, Wada T, Takahashi T, Nishida T, Yoshikawa Y, Aoyagi S (2011) Fabrication of highly dielectric nano-BaTiO3/epoxy-resin composite plate having trenches by mold casting and its application to capacitive energy harvesting. Proc. of Transducers. 2642–2645Google Scholar
  35. Tao K, Ding G, Wang P, Yang Z, Wang Y (2012) Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. Proc. IEEE MEMS. 1237–1240Google Scholar
  36. Tian J, Sosin S, Iannacci J, Gaddi R, Bartek M (2008) RF MEMS wafer-level packaging using through-wafer interconnect. Elsevier Sensors and Actuators A: Physical, Special Issue: Eurosensors XX 2006 Conference. 142:442–451Google Scholar
  37. Todorov G, Valtchev S, Todorov T, Ivanov I, Klaassens B (2011) Tuning techniques for kinetic MEMS energy harvesters. Proc. IEEE INTELEC. 1–6Google Scholar
  38. Tran AT, Wunnicke O, Pandraud G, Nguyen MD, Schellevis H, Sarro PM (2013) Slender piezoelectric cantilevers of high quality AlN layers sputtered on Ti thin film for MEMS actuators. Elsevier Sensors and Actuators A: Physical. doi: 10.1016/j.sna.2013.01.047
  39. Wang P, Dai X, Zhao X, Ding G (2009) A micro electromagnetic vibration energy harvester with sandwiched structure and air channel for high energy conversion efficiency. Proc. PowerMEMS. 296–299Google Scholar
  40. Wu H, Tang L, Yang Y, Soh CK (2012) A novel two-degrees-of-freedom piezoelectric energy harvester. J Intell Mater Syst Struct. doi: 10.1177/1045389X12457254 Google Scholar
  41. Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. In: Tan YK (ed) Sustainable energy harvesting technologies—past, present and future, 1st edn. InTech, Rijeka, pp 25–47Google Scholar
  42. Zorlu O, Topal ET, Külah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRefGoogle Scholar
  43. Zukauskaite A, Wingqvist G, Palisaitis J, Jensen J, Persson Per OÅ, Matloub R, Muralt P, Kim Y, Birch J, Hultman L (2012) Microstructure and dielectric properties of piezoelectric magnetron sputtered w ScxAl1 xN thin films. J Appl Phys 111:7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Iannacci
    • 1
  • E. Serra
    • 1
    • 4
  • R. Di Criscienzo
    • 1
  • G. Sordo
    • 1
  • M. Gottardi
    • 1
  • A. Borrielli
    • 2
  • M. Bonaldi
    • 2
  • T. Kuenzig
    • 3
  • G. Schrag
    • 3
  • G. Pandraud
    • 4
  • P. M. Sarro
    • 4
  1. 1.Fondazione Bruno Kessler-FBKCenter for Materials and Microsystems (CMM)Povo, TrentoItaly
  2. 2.Nanoscience-Trento-FBK DivisionInstitute of Materials for Electronics and MagnetismPovo, TrentoItaly
  3. 3.Institute for Physics of Electrotechnology-TEPMunich University of Technology-TUMMunichGermany
  4. 4.Department of Microelectronics Electronic Components, Technology and Materials LabDelft University of Technology/DIMESDelftThe Netherlands

Personalised recommendations