Microsystem Technologies

, Volume 20, Issue 4–5, pp 585–592 | Cite as

Development and characterization of a microthermoelectric generator with plated copper/constantan thermocouples

  • Silvia Pelegrini
  • Andrea Adami
  • Cristian Collini
  • Paolo Conci
  • Clodoaldo I. L. de Araújo
  • Vittorio Guarnieri
  • Saulo Güths
  • André A. Pasa
  • Leandro Lorenzelli
Technical Paper

Abstract

This work reports the development and the characterization of a microthermoelectric generator (μTEG) based on planar technology using electrochemically deposited constantan and copper thermocouples on a micro machined silicon substrate with a SiO2/Si3N4/SiO2 thermally insulating membrane to create a thermal gradient. The μTEG has been designed and optimized by finite element simulation in order to exploit the different thermal conductivity of silicon and membrane in order to obtain the maximum temperature difference on the planar surface between the hot and cold junctions of the thermocouples. The temperature difference was dependent on the nitrogen (N2) flow velocity applied to the upper part of the device. The fabricated thermoelectric generator presented maximum output voltage and power of 118 mV/cm2 and of 1.1 μW/cm2, respectively, for a device with 180 thermocouples, 3 kΩ of internal resistance, and under a N2 flow velocity of 6 m/s. The maximum efficiency (performance) was 2 × 10−3 μW/cm2 K2.

References

  1. Boniche I, Masilamani S, Durscher RJ, Morgan BC, Arnold DP (2009) Design of a miniaturized thermoelectric generator using micromachined silicon substrates. J Electr Mater 38(7):1293–1302. doi: 10.1007/s11664-009-0764-9 CrossRefGoogle Scholar
  2. Delatorre RG, Sartorelli ML, Schervenski AQ, Güths S, Pasa AA (2003) Thermoelectric properties of electrodeposited CuNi alloys on Si. J Appl Phys 93(10):6154–6158. doi: 10.1063/1.1569432 CrossRefGoogle Scholar
  3. Genix M, Vairac P, Cretin B (2009) Local temperature surface measurement with intrinsic thermocouple. Int J Therm Sci 48:1679–1682. doi: 10.1016/j.ijthermalsci.2009.01.020 CrossRefGoogle Scholar
  4. Glatz W, Schowyter E, Durrer L, Hierold C (2009) Bi2Te3: based flexible micro thermoelectric generator with optimized design. J Microelectromech Syst 18(3):763–772. doi: 10.1109/JMEMS.2009.2021104 CrossRefGoogle Scholar
  5. Green TA, Russell AE, Roy S (1998) The development of a stable citrate electrolyte for the electrodeposition of copper–nickel alloys. J Electrochem Soc 145(3):875–881. doi: 10.1149/1.1838360 CrossRefGoogle Scholar
  6. Herin Ph, Théry P (1992) Measurements on the thermoelectric properties of thin layers of two metals in electrical contact. Application for designing new heat-flow sensors. Meas Sci Technol 3:495. doi: 10.1088/0957-0233/3/5/009 CrossRefGoogle Scholar
  7. Holman JP (1992) Heat transfer, 7th edn. Metric Editions, London, p 713Google Scholar
  8. Huesgen T, Woias P, Kockmann N (2008) Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens Actuators A 145–146:423–429. doi: 10.1016/j.sna.2007.11.032 CrossRefGoogle Scholar
  9. Iraj K, Elham K, Mansoor F (2008) Fabrication and nanostructure study of ultra thin electroplating constantan film on GaAs as a thermopower sensor. J Phys Conf Ser 100:052025. doi: 10.1088/1742-6596/100/5/052025 CrossRefGoogle Scholar
  10. Kasap SO (2001) Thermoelectric effects in metals: thermocouples, principles of electronic materials and devices, 2nd edn. e-BookletGoogle Scholar
  11. Lemmon EW, Jacobsen RT (2004) Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int J Thermophys 25(1):21–69. doi: 210195-928x/04/0100-0021/02004 CrossRefGoogle Scholar
  12. Leonov V, Vullers RJM (2009) Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J Renew Sustain Energy 1:062701. doi: 10.1063/1.3255465 CrossRefGoogle Scholar
  13. Reynolds AJ (1972) Thermofluid dynamics. Wiley, London, p 680Google Scholar
  14. Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935. doi: 10.1016/S1359-4311(03)00012-7 CrossRefGoogle Scholar
  15. Rowe DM (2006) Review thermoelectric waste heat recovery as a renewable energy source. Int J Innov Energy Syst Power 1(1):13–23Google Scholar
  16. Salerno D (2010) Ultralow voltage energy harvester uses thermoelectric generator for battery-free wireless sensors. J Analog Innov 20(3):1–11Google Scholar
  17. Sartorelli ML, Schervenski AQ, Delatorre RG, Klauss P, Maliska AM, Pasa AA (2001) Cu–Ni thin films electrodeposited on Si: composition and current efficiency. Phys Stat Sol A 187(16):91–95. doi: 0031-8965/01/18709-0091 CrossRefGoogle Scholar
  18. Schowyter E, Glatz W, Durrer L, Hierold C (2008) Flexible micro thermoelectric generator based electroplated Bi2+x Te3–x. DTIP Mens Moems. doi: 10.1109/DTIP.2008.4752949 Google Scholar
  19. Sue CY, Tsai NC (2012) Human powered MEMS-based energy harvest devices. Appl Energy 93:390–400. doi: 10.1016/j.apenergy.2011.12.037 CrossRefGoogle Scholar
  20. Xie J, Lee C, Feng H (2010) Desing, fabrication, and characterization of CMOS MENS-based thermoelectric power generators. J Microelectromech Syst 19(2):317–324. doi: 10.1109/JMEMS.2010.2041035 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Silvia Pelegrini
    • 1
    • 2
  • Andrea Adami
    • 2
  • Cristian Collini
    • 2
  • Paolo Conci
    • 2
  • Clodoaldo I. L. de Araújo
    • 1
  • Vittorio Guarnieri
    • 2
  • Saulo Güths
    • 1
  • André A. Pasa
    • 1
  • Leandro Lorenzelli
    • 2
  1. 1.Universidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations