Microsystem Technologies

, Volume 21, Issue 3, pp 527–537 | Cite as

Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems

  • Feriel Samouda
  • Stéphane ColinEmail author
  • Christine Barrot
  • Lucien Baldas
  • Juergen J. Brandner
Technical Paper


A new micro molecular tagging velocimetry (μMTV) setup has been developed to analyze velocity fields in confined internal gas flows. MTV is a little-intrusive velocimetry technique. It relies on the properties of molecular tracers which can experience relatively long lifetime luminescence once excited by a laser beam with an appropriate wavelength. The technique has been validated for acetone seeded flows of argon inside a 1 mm depth rectangular minichannel, with a multilayer design offering two optical accesses. Velocity profiles have been obtained using a specific data reduction process, with a resolution in the order of 15 μm. The experimental data are compared to theoretical velocity profiles of compressible pressure-driven flows. A good agreement is observed, except close to the walls, where the accuracy would still need to be improved. Following these first results obtained at atmospheric pressure, the influence of pressure on the luminescence intensity of acetone molecules is analyzed. The obtained data lead to a discussion of MTV applicability to rarefied flows and its possible use for a direct measurement of velocity slip at the channel walls.


Particle Image Velocimetry Acetone Molecule Biacetyl Velocimetry Technique Measured Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research obtained financial support from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement no 215504 and from the Fédération de Recherche Fermat, FR 3089.


  1. Agrawal A (2011) A comprehensive review on gas flow in microchannels. Int J Micro-Nano Scale Transp 2:1–40CrossRefGoogle Scholar
  2. Charogiannis A, Beyrau F (2013) Laser induced phosphorescence imaging for the investigation of evaporating liquid flows. Exp Fluids 54(5):1–15. doi: 10.1007/s00348-013-1518-2 CrossRefGoogle Scholar
  3. Colin S (2005) Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1(3):268–279. doi: 10.1007/s10404-004-0002-y CrossRefGoogle Scholar
  4. Colin S (2012) Gas microflows in the slip flow regime: a critical review on convective heat transfer. J Heat Transf ASME 134(2):020908. doi: 10.1115/1.4005063 CrossRefGoogle Scholar
  5. Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transf Eng 25(3):23–30. doi: 10.1080/01457630490280047 CrossRefGoogle Scholar
  6. Elsnab JR, Maynes D, Klewicki JC, Ameel TA (2010) Mean flow structure in high aspect ratio microchannel flows. Exp Therm Fluid Sci 34(8):1077–1088CrossRefGoogle Scholar
  7. Ewart T, Perrier P, Graur IA, Méolans JG (2007) Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech 584:337–356CrossRefzbMATHGoogle Scholar
  8. Garbe CS, Roetmann K, Beushausen V, Jähne B (2008) An optical flow MTV based technique for measuring microfluidic flow in the presence of diffusion and Taylor dispersion. Exp Fluids 44:439–450CrossRefGoogle Scholar
  9. Gendrich CP, Koochesfahani MM, Nocera DG (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23:361–372CrossRefGoogle Scholar
  10. Graur I, Perrier P, Ghozlani W, Meolans J (2009) Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel. Phys Fluids 21(10):102004. doi: 10.1063/1.3253696 CrossRefGoogle Scholar
  11. Hill RB, Klewicki JC (1996) Data reduction methods for flow tagging velocity measurements. Exp Fluids 20(3):142–152. doi: 10.1007/BF00190270 CrossRefGoogle Scholar
  12. Hu H, Koochesfahani MM (2006) Molecular tagging techniques for micro-flow and micro-scale heat transfer studies. In: Proceedings of the FEDSM09. ASME, Vail, pp FEDSM2009–78059Google Scholar
  13. Ismailov M, Schock H, Fedewa A (2006) Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry. Exp Fluids 41(1):57–65. doi: 10.1007/s00348-006-0150-9 CrossRefGoogle Scholar
  14. Koochesfahani MM (1999) Molecular tagging velocimetry (MTV): progress and applications. In: 30th AIAA fluid dynamics conference. AIAA, Norfolk, pp AIAA99–3786Google Scholar
  15. Koochesfahani MM, Nocera DG (2007) Molecular tagging velocimetry. In: Tropea C, Yarin AL, Foss JF (eds) Handbook of experimental fluid dynamics. Springer, Berlin, pp 362–382Google Scholar
  16. Lempert WR, Harris SR (2000) Flow tagging velocimetry using caged dye photo-activated fluorophores. Meas Sci Technol 11(9):1251–1258CrossRefGoogle Scholar
  17. Lempert WR, Ronney P, Magee K, Gee KR, Haugland RP (1995) Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM). Exp Fluids 18(4):249–257. doi: 10.1007/bf00195095 CrossRefGoogle Scholar
  18. Lempert WR, Jiang N, Sethuram S, Samimy M (2002) Molecular tagging velocimetry measurements in supersonic microjets. AIAA J 40(6):1065–1070CrossRefGoogle Scholar
  19. Lempert WR, Boehm M, Jiang N, Gimelshein S, Levin D (2003) Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows. Exp Fluids 34(3):403–411CrossRefGoogle Scholar
  20. Li S, Day JC, Park JJ, Cadou CP, Ghodssi R (2007) A fast-response microfluidic gas concentrating device for environmental sensing. Sens Actuators A Phys 136(1):69–79CrossRefGoogle Scholar
  21. Lozano A, Yip B, Hanson RK (1992) Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence. Exp Fluids 13(6):369–376CrossRefGoogle Scholar
  22. Matsuda Y, Uchida T, Suzuki S, Misaki R, Yamaguchi H, Niimi T (2011) Pressure-sensitive molecular film for investigation of micro gas flows. Microfluid Nanofluid 10(1):165–171CrossRefGoogle Scholar
  23. Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15(9):2613–2621CrossRefGoogle Scholar
  24. Maynes D, Webb AR (2002) Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry. Exp Fluids 32(1):3–15CrossRefGoogle Scholar
  25. Mirzaei M, Dam NJ, van de Water W (2012) Molecular tagging velocimetry in turbulence using biacetyl. Phys Rev E 86(4):046318CrossRefGoogle Scholar
  26. Morini GL (2000) Analytical determination of the temperature distribution and Nusselt numbers in rectangular ducts with constant axial heat flux. Int J Heat Mass Transf 43(5):741–755CrossRefzbMATHGoogle Scholar
  27. Pharas K, McNamara S (2010) Knudsen pump driven by a thermoelectric material. J Micromech Microeng 20:125032CrossRefGoogle Scholar
  28. Pitakarnnop J, Varoutis S, Valougeorgis D, Geoffroy S, Baldas L, Colin S (2010) A novel experimental setup for gas microflows. Microfluid Nanofluid 8(1):57–72. doi: 10.1007/s10404-009-0447-0 CrossRefGoogle Scholar
  29. Pitz RW, Lahr MD, Douglas ZW, Wehrmeyer JA, Hu S, Carter CD, Hsu K-Y, Lum C, Koochesfahani MM (2005) Hydroxyl tagging velocimetry in a supersonic flow over a cavity. Appl Optics 44(31):6692–6700CrossRefGoogle Scholar
  30. Samouda F, Barrot C, Colin S, Baldas L, Laurien N (2012a) Analysis of gaseous flows in microchannels by molecular tagging velocimetry. In: Proceedings of the ASME 2012 10th international conference on nanochannels, microchannels and minichannels (ICNMM2012). ASME, Puerto Rico, USA, pp 221–228. doi: 10.1115/ICNMM2012-73125
  31. Samouda F, Brandner JJ, Barrot C, Colin S (2012b) Velocity field measurements in gas phase internal flows by molecular tagging velocimetry. In: Journal of physics: conference series—proceedings of 1st European conference on gas microflows (GASMEMS2012) 362(1):012026. doi: 10.1088/1742-6596/362/1/012026
  32. Silva G, Leal N, Semiao V (2008) Micro-PIV and CFD characterization of flows in a microchannel: velocity profiles, surface roughness and Poiseuille numbers. Int J Heat Fluid Flow 29(4):1211–1220CrossRefGoogle Scholar
  33. Stier B, Koochesfahani MM (1999) Molecular tagging velocimetry (MTV) measurements in gas phase flows. Exp Fluids 26:297–304CrossRefGoogle Scholar
  34. Sugii Y, Okamoto K (2006) Velocity measurement of gas flow using micro PIV technique in polymer electrolyte fuel cell. In: Proceedings of 4th international conference on nanochannels, microchannels and minichannels (ICNMM2006). ASME, Limerick, pp ICNMM2006–96216Google Scholar
  35. Szalmás L, Pitakarnnop J, Geoffroy S, Colin S, Valougeorgis D (2010) Comparative study between computational and experimental results for binary rarefied gas flows through long microchannels. Microfluid Nanofluid 9(6):1103–1114. doi: 10.1007/s10404-010-0631-2 CrossRefGoogle Scholar
  36. Thompson BR, Maynes D, Webb BW (2005) Characterization of the hydrodynamically developing flow in a microtube using MTV. J Fluids Eng 127(5):1003–1012CrossRefGoogle Scholar
  37. Tran TT (2008) Acetone planar laser-induced fluorescence and phosphorescence for mixing studies of multiphase flows at high pressure and temperature. PhD thesis, Georgia Institute of Technology, AtlantaGoogle Scholar
  38. Walsh P, Egan V, Walsh E (2010) Novel micro-PIV study enables a greater understanding of nanoparticle suspension flows: nanofluids. Microfluid Nanofluid 8(6):837–842CrossRefGoogle Scholar
  39. Wereley ST, Meinhart CD (2005) Chapter 2. Micron-Resolution Particle Image Velocimetry. In: Breuer KS (ed) Microscale Diagnostic Techniques. Springer, Berlin, pp 51–112. doi: 10.1007/b137604
  40. Wereley ST, Gui L, Meinhart CD (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40(6):1047–1055CrossRefGoogle Scholar
  41. Wu MH, Lin PS (2010) Design, fabrication and characterization of a low-temperature co-fired ceramic gaseous bi-propellant microthruster. J Micromech Microeng 20(8):085026. doi: 10.1088/0960-1317/20/8/085026 CrossRefGoogle Scholar
  42. Yamaguchi H, Hanawa T, Yamamoto O, Matsuda Y, Egami Y, Niimi T (2011) Experimental measurement on tangential momentum accommodation coefficient in a single microtube. Microfluid Nanofluid 11(1):57–64. doi: 10.1007/s10404-011-0773-x CrossRefGoogle Scholar
  43. Yoon SY, Ross JW, Mench MM, Sharp KV (2006) Gas-phase particle image velocimetry (PIV) for application to the design of fuel cell reactant flow channels. J Power Sources 160:1017–1025CrossRefGoogle Scholar
  44. Zhang W-M, Meng G, Wei X (2012) A review on slip models for gas microflows. Microfluid Nanofluid 13(6):845–882. doi: 10.1007/s10404-012-1012-9 CrossRefGoogle Scholar
  45. Zhu L, Kroodsma N, Yeom J, Haan J, Shannon M, Meng D (2011) An on-demand microfluidic hydrogen generator with self-regulated gas generation and self-circulated reactant exchange with a rechargeable reservoir. Microfluid Nanofluid 11(5):569–578. doi: 10.1007/s10404-011-0822-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Feriel Samouda
    • 1
  • Stéphane Colin
    • 1
    Email author
  • Christine Barrot
    • 1
  • Lucien Baldas
    • 1
  • Juergen J. Brandner
    • 2
  1. 1.INSA, UPS, Mines Albi, ISAE, ICAUniversité de ToulouseToulouseFrance
  2. 2.Karlsruhe Institute of Technology, Institute for Micro Process EngineeringEggenstein-LeopoldshafenGermany

Personalised recommendations