Microsystem Technologies

, Volume 20, Issue 10–11, pp 1875–1880 | Cite as

Microstructuring of non-conductive silicon carbide by electrical discharge machining

  • Florian ZellerEmail author
  • Tim Hösel
  • Claas Müller
  • Holger Reinecke
Technical Paper


The electrical discharge machining process is an established process for machining materials regardless of their mechanical properties. Thus this process is especially attractive for materials which are hard to machine with conventional machining methods. The only requirement a material has to fulfil is having a certain electrical conductivity. Ceramic materials, (e.g. zirconia, silicon nitride or silicon carbide) exhibit excellent mechanical properties but are mostly electrically non-conductive. This can be compensated by an applied, electrically conductive assisting electrode. With this modification, the electrical discharge machining of non-conductive ceramic material is enabled. In this study the micro electrical discharge machining of non-conductive sintered silicon carbide is investigated. The drilling process shows instabilities due to the excessive generation of carbon products. A stabilisation of the process up to the maximum depth of 420 μm is realized by two approaches: adapting process parameters and adapting the tool electrode geometry. An analysis of the amount of infeed used in a milling process shows that an infeed of 15 μm has the best material removal rate to tool wear rate ratio. A maximum material removal rate of 3.58 × 10−3 mm3/min is achieved. Detached microstructures with an aspect ratio of 30 are machined. A conducted surface analysis indicates that the present removal mechanism is thermally induced spalling. Furthermore no heat affected zone is present in the machined near-surface area.


Tool Wear Material Removal Material Removal Rate Electrical Discharge Machine Tool Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the “Ministerium für Wissenschaft, Forschung und Kunst Baden Württemberg” for the financial support of the graduate school “Generierungsmechanismen von Mikrostrukturen” (GenMik).


  1. Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J Appl Phys 73:7900–7909. doi: 10.1063/1.353942 CrossRefGoogle Scholar
  2. Fukuzawa Y, Tani T, Iwane E, Mohri N (1995a) A new machining method for insulating ceramics with an electrical discharge machining phenomenon. J Ceram Soc Jpn 103:987–992. doi: 10.2109/jcersj.103.1000 CrossRefGoogle Scholar
  3. Fukuzawa Y, Tani T, Ito Y, Ichinose Y, Mohri N (1995) Electrical discharge machining (edm) of insulator ceramics with a sheet of metal mesh. Proc ISEM-11, pp. 173–179Google Scholar
  4. Ho KH, Newman ST (2003) State of the art electrical discharge machining. Int J Mach Tool Manuf 43:1287–1300. doi: 10.1016/S0890-6955(03)00162-7 CrossRefGoogle Scholar
  5. Hösel T, Müller C, Reinecke H (2009a) Spark erosive structuring of electrically nonconducting zirconia with an assisting electrode. CIRP J Manuf Sci Technol 4:357–361. doi: 10.1016/j.cirpj.2011.05.005 CrossRefGoogle Scholar
  6. Hösel T, Müller C, Reinecke H (2009) Simple techniques of applying lacquer based assisting electrodes for spark erosive structuring of electrically nonconductive zirconia (ZrO2). 4M/ICOMMGoogle Scholar
  7. Knitter R, Günther E, Odemer C, Maciejewski U (1996) Ceramic microstructures and potential applications. Microsyst Technol 2:135–138. doi: 10.1007/s005420050030 CrossRefGoogle Scholar
  8. König W, Dauw DF, Levy G, Panten U (1988) EDM—future steps towards the machining of ceramics. CIRP Ann Manuf Technol 37:623–631. doi: 10.1016/S0007-8506(07)60759-8 CrossRefGoogle Scholar
  9. Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through Fundamental Insight into the Process. CIRP Ann Manuf Technol 2:64–87. doi: 10.1016/S0007-8506(07)60020-1 CrossRefGoogle Scholar
  10. Lauwers B, Kruth JP, Liu W, Eeraerts W, Schacht B, Bleys P (2004) Investigation of material removal mechanisms in EDM of composite ceramic material. J Mater Process Technol 149:347–352. doi: 10.1016/j.jmatprotec.2004.02.013 CrossRefGoogle Scholar
  11. Lauwers B, Liu W, Kruth JP, Vleugels J, Jiang D, van der Biest O (2005) Wire EDM machining of Si3N4, ZrO2 and Al2O3 based ceramics. Int J Electr Mach 10:33–37Google Scholar
  12. Panten U (1990) Funkenerosive Bearbeitung von leitfähigen Keramiken. Dissertation, RWTH AachenGoogle Scholar
  13. Petrofes NF, Gadalla AM (1988) Processing aspects of shaping advanced materials by electrical discharge machining. Adv Mater Manuf Process 3:127–153. doi: 10.1080/10426919808935224 Google Scholar
  14. Tani T, Fukuzawa Y, Mohri N, Saito N, Okada M (2004) Machining phenomena in WEDM of insulating ceramics. J Mater Process Technol 149:124–128. doi: 10.1016/j.jmatprotec.2003.12.027 CrossRefGoogle Scholar
  15. Zauner R (2006) Micro powder injection molding. Microelectron Eng 83:1442–1444. doi: 10.1016/j.mee.2006.01.170 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florian Zeller
    • 1
    Email author
  • Tim Hösel
    • 1
  • Claas Müller
    • 1
  • Holger Reinecke
    • 1
  1. 1.Laboratory for Process Technology, Department of Microsystems Engineering, IMTEKUniversity of FreiburgFreiburgGermany

Personalised recommendations