Microsystem Technologies

, Volume 20, Issue 10–11, pp 1797–1802 | Cite as

High-aspect-ratio nanoporous membranes made by reactive ion etching and e-beam and interference lithography

  • Ralu Divan
  • Olga V. Makarova
  • Shelby Skoog
  • Roger Narayan
  • Anirudha V. Sumant
  • Cha-Mei Tang
  • Nicolaie Moldovan
Technical Paper


Nanoporous membranes engineered to mimic natural filtration systems can be used in “smart” implantable drug delivery systems, hemodialysis membranes, bio-artificial organs, and other novel nano-enabled medical devices. Conventional membranes exhibit several limitations, including broad pore size distributions and low pore densities. To overcome these problems, lithographic approaches were used to develop porous silicon, silicon nitride, ultrananocrystalline diamond (UNCD), and polymer film membranes. Here we report processing of high porosity, high-aspect-ratio membranes by two techniques: UNCD fabricated by reactive ion etching after e-beam lithography and epoxy fabricated by interference lithography.


  1. Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. WIREs nanomed. Nanobiotechnol 1(5):568–581CrossRefGoogle Scholar
  2. Auciello O, Sumant AV (2010) Status review of the science and technology of ultrananocrystalline diamond (UNCDTM) films and application to multifunctional devices. Diam Rel Mater 19(7–9):699CrossRefGoogle Scholar
  3. Bakowicz K, Mitura S (2002) Biocompatibilty of NCD. J Wide Bandgap Mater 9(4):261–272CrossRefGoogle Scholar
  4. Brueck SRJ (2005) Optical and interferometric lithography––nanotechnology enablers. Proc IEEE 93(10):1704CrossRefGoogle Scholar
  5. Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Fabrication of photonic crystal for the visible spectrum by holographic lithography. Nature 404:53CrossRefGoogle Scholar
  6. de Boor J, Geyer N, Gösele U, Schmidt V (2009) Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning. Opt Lett 34(12):1783CrossRefGoogle Scholar
  7. del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17(6):R81CrossRefGoogle Scholar
  8. Desai TA, West T, Cohen M, Boiarski T, Rampersaud A (2004) Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 56(11):1661–1673CrossRefGoogle Scholar
  9. Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A, Ferrari M (1998) Microfabricated immuno-isolating biocapsules. Biotechnol Bioeng 57(1):118–120CrossRefGoogle Scholar
  10. Fernandez A, Decker JY, Herman SM, Phillion DW, Sweeney DW, Perry MD (1997) Methods for fabricating arrays of holes using interference lithography. J Vac Sci Technol B 15(6):2439CrossRefGoogle Scholar
  11. Fries MD, Vohra YK (2004) Properties of nanocrystalline diamond thin films grown by MPCVD for biomedical implant purposes. Diam Rel Mater 13:1740–1743CrossRefGoogle Scholar
  12. Gruen DM, Shenderova OA, Vul AY (2005) Synthesis, properties and applications of ultrananocrystalline diamond. Springer, New YorkCrossRefGoogle Scholar
  13. Gutierrez-Rivera LE, Cescato L (2008) SU-8 sub-micrometric sieves recorded by UV interference lithography. J Micromech Microeng 18(11):115003CrossRefGoogle Scholar
  14. Härtl A, Schmich E, Garrido JA, Hernando J, Catharino SCR, Walter S, Feulner P, Kromka A, Steinmüller D, Stutzmann M (2004) Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat Mater 3:736–742CrossRefGoogle Scholar
  15. Kuiper S, van Wolferen H, van Rijn CJM, Nijdam W, Krijnen G, Elwenspoek M (2001) Fabrication of microsieves with sub-micron pore size by laser interference lithography. J Micromech Microeng 11:33CrossRefGoogle Scholar
  16. Lorenz H, Despont M, Fahrni N, Brugger J, Vettiger P, Renaud P (1998a) High-aspect-ratio, ultra-thick, negative-tone near-UV photoresist and its applications for MEMS. Sens Actuat A 64(1):33CrossRefGoogle Scholar
  17. Lorenz H, Laudon M, Renaud P P (1998b) Mechanial characterization of a new high-aspect-ratio near UV-photoresist. Microelectron Eng 41(42):371CrossRefGoogle Scholar
  18. Makarova OV, Divan R, N. Moldovan N, Rosenmann D, Tang C-M (2010) Nanoporous ultrananocrystalline diamond membranes. J Vac Sci Technol B 28, C6P42Google Scholar
  19. Makarova OV, Tang C-M, Amstutz P, Divan R, Imre A, Mancini DC, Hoffbauer M, Williamson T (2009) Fabrication of high density, high-aspect-ratio polymide nanofilters. J Vac Sci Technol B 27(6):2585–2587CrossRefGoogle Scholar
  20. Narayan RJ, Jin C, Menegazzo N, Mizaikoff B, Gerhardt RA, Andara M, Agarwal A, Shih CC, Shih CM, Lin SJ, Su YY (2007) Nanoporous hard carbon membranes for medical applications. J Nanosci Nanotechnol 7(4–5):1486–1493CrossRefGoogle Scholar
  21. Narayan RJ, Aggarwal R, Wei W, Jin C, Monteiro-Riviere NA, Crombez R, Shen W (2008) Mechanical and biological properties of nanoporous carbon membranes. Biomed Mater 3:034107CrossRefGoogle Scholar
  22. Pang L, Nakagawa W, Fainman Y (2003) Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching. Opt Eng 42:2912CrossRefGoogle Scholar
  23. Prenen AM, van der Werf JCA, Bastiaansen CWM, Broer DJ (2009) Monodisperse, polymeric nano- and microsieves produced with interference holography. Adv Mater 21(17):1751CrossRefGoogle Scholar
  24. Sumant AV, Auciello O, Yuan HC, Ma Z, Carpick RW, Mancini DC (2009) Large-area low-temperature ultrananocrystalline diamond 9UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMS/NEMS-CMOS systems. Proc SPIE 7318:731817CrossRefGoogle Scholar
  25. Tao SL, Desai TA (2003) Microfabrication drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55(3):315–328CrossRefGoogle Scholar
  26. Tong HD, Jansen HV, Gadgil VJ, Bostan CG, Berenschot E, Rijn CJM V, Elwenspoek M (2004) Silicon nitride nanosieve membrane. Nano Lett 4:283–288CrossRefGoogle Scholar
  27. van Rijn CJM, Nijdam W, Kuiper S, Veldhuis GJ, van Wolferen H, Elwenspoek M (1999) Microsieves made with laser interference lithography for micro-filtration applications. J Micromech Microeng 9:170CrossRefGoogle Scholar
  28. Walsh M (2000) Nanostructuring magnetic thin films using interference lithography. MIT, MS ThesisGoogle Scholar
  29. Wang X, Ocola LE, Divan R, Sumant AV (2012) Nano-patterning of ultrananocrystalline diamond nanowires. Nanotechnology 23(7):075301CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA)  2013

Authors and Affiliations

  • Ralu Divan
    • 1
  • Olga V. Makarova
    • 2
  • Shelby Skoog
    • 3
  • Roger Narayan
    • 3
  • Anirudha V. Sumant
    • 1
  • Cha-Mei Tang
    • 4
  • Nicolaie Moldovan
    • 5
  1. 1.Argonne National LaboratoryCenter for Nanoscale MaterialsArgonneUSA
  2. 2.Creatv MicroTech Inc.ChicagoUSA
  3. 3.Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityRaleighUSA
  4. 4.Creatv MicroTech Inc.PotomacUSA
  5. 5.Advanced Diamond Technologies Inc.RomeovilleUSA

Personalised recommendations