Microsystem Technologies

, Volume 19, Issue 12, pp 1873–1888 | Cite as

Controlling parameters of focused ion beam (FIB) on high aspect ratio micro holes milling

  • Fatin Syazana Jamaludin
  • Mohd Faizul Mohd Sabri
  • Suhana Mohd Said
Review Paper


Focused ion beam (FIB) direct milling is now recognized as a new method of fabrication, due to high flexibility in milling dimensions, the possible geometries and the material selectivity. This paper discusses the fabrication of micro holes using FIB direct milling in terms of high aspect ratio structures, including FIB parameters and the major effects of FIB milling. It is deduced that sputter yield of material gives a major impact to the depth of milling. Optimization parameters coupled control of FIB direct milling will provide a precise means of fabricating of high aspect ratio micro holes whilst resolving the problem of re-deposition and amorphisation which is common in micro milling.


Milling Dwell Time Beam Current High Aspect Ratio Pattern Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to acknowledge the financial support provided by the Institute of Research Management and Consultancy, University of Malaya (UM) under the IPPP Fund Project No. PV060/2012A and High Impact Research Grant, Project No. UM.G/KB4/6/1(H-16001-00-D000029).


  1. Adams DP, Vasile MJ, Mayer TM, Hodges VC (2003) Focused ion beam milling of diamond: effects of H2O on yield, surface morphology and microstructure. J Vac Sci Technol B 21(6):2334–2343CrossRefGoogle Scholar
  2. Ali MY, Hung W, Fu YQ (2010) A review of focused ion beam sputtering. Int J Precis Eng Man 11(1):157–170CrossRefGoogle Scholar
  3. An R, Li Y, Dou YP, Fang Y, Yang H, Gong QH (2004) Laser micro-hole drilling of soda-lime glass with femtosecond pulses. Chin Phys Lett 21(12):2465–2468CrossRefGoogle Scholar
  4. Annamalai AS, Ramalingam V (2011) Experimental investigation and computational fluid dynamics analysis of a air cooled condenser heat pipe. Therm Sci 15(3):759–772CrossRefGoogle Scholar
  5. Atiqah N, Jaafar I, Ali MY, Asfana B (2012) Application of focused ion beam micromachining: a review. Adv Mater Res 576:507–510CrossRefGoogle Scholar
  6. Bassim ND, De Gregorio BT, Kilcoyne ALD, Scott K, Chou T, Wirick S, Cody G, Stroud RM (2012) Minimizing damage during FIB sample preparation of soft materials. J Microsc 245(3):288–301CrossRefGoogle Scholar
  7. Benawra J, Donald A, Shannon M (2008) Developing dual beam methods for the study of polymers. J Phys Conf Ser 126:2079CrossRefGoogle Scholar
  8. Bhavsar SN, Aravindan S, Rao PV (2009) A critical review on microtools fabrication by focused ion beam (FIB) technology. Technology 2009:12–22Google Scholar
  9. Bhavsar SN, Aravindan S, Rao PV (2012) Machinability study of cemented carbide using focused ion beam (FIB) milling. Mater Manuf Process 27(10):1029–1034CrossRefGoogle Scholar
  10. Bushby AJ, P’ng KM, Young RD, Pinali C, Knupp C, Quantock AJ (2011) Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat Protoc 6(6):845–858CrossRefGoogle Scholar
  11. Causa F, Milani M, Sarma J, Tatti F, Ferraro L (2006) Improvement of SLD efficiency by focussed ion beam post-fabrication processing. In: Society of photo-optical instrumentation engineers (SPIE) conference series, p 10Google Scholar
  12. Chantngarm P (2008) Characterization of structures maskless-etched by low-energy FIB. In: 2008 IEEE Asia Pacific conference on circuits and systems (APCCAS 2008), vol 1–4, pp 1716–1719Google Scholar
  13. Chen ST, Luo TS (2011) Development of a high-precision, wear-resistant micro-holes structure. J Mater Process Tech 211(2):285–293CrossRefGoogle Scholar
  14. Cheung CL, Nikolić R, Reinhardt C, Wang T (2006) Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17(5):1339CrossRefGoogle Scholar
  15. Chini T, Sanyal M, Bhattacharyya S (2002) Energy-dependent wavelength of the ion-induced nanoscale ripple. Phys Rev B 66:153404CrossRefGoogle Scholar
  16. Chuang WH, Fettig RK, Ghodssi R (2007) Nano-scale fatigue study of LPCVD silicon nitride thin films using a mechanical-amplifier actuator. J Micromech Microeng 17(5):938CrossRefGoogle Scholar
  17. Dasgupta A, Barker D, Pecht M (1990) Reliability prediction of electronic packages. In: IEEE annual proceedings of the reliability and maintainability symposium, pp 323–330Google Scholar
  18. Davies S, Khamsehpour B (1996) Focused ion beam machining and deposition for nanofabrication. Vacuum 47(5):455–462CrossRefGoogle Scholar
  19. Drobne D, Milani M, Zrimec A, Leser V, Berden Zrimec M (2005) Electron and ion imaging of gland cells using the FIB/SEM system. J Microsc (Oxford) 219:29–35MathSciNetCrossRefGoogle Scholar
  20. Drobne D, Milani M, Leser V, Tatti F, Zrimec A, Znidarsic N, Kostanjsek R, Strus J (2008) Imaging of intracellular spherical lamellar structures and tissue gross morphology by a focused ion beam/scanning electron microscope (FIB/SEM). Ultramicroscopy 108(7):663–670CrossRefGoogle Scholar
  21. Einsle JF, Bouillard JS, Dickson W, Zayats AV (2011) Hybrid FIB milling strategy for the fabrication of plasmonic nanostructures on semiconductor substrates. Nanoscale Res Lett 6:1–5CrossRefGoogle Scholar
  22. Fakhoury JR, Sisson JC, Zhang XJ (2009) Microsystems for controlled genetic perturbation of live Drosophila embryos: RNA interference, development robustness and drug screening. Microfluid Nanofluid 6(3):299–313CrossRefGoogle Scholar
  23. Fang FZ, Xu ZW, Hu XT, Wang CT, Luo XG, Fu YQ (2010) Nano-photomask fabrication using focused ion beam direct writing. CIRP Ann Manuf Technol 59(1):543–546CrossRefGoogle Scholar
  24. Feng C, Zhao YP, Liu DQ (2007) Squeeze-film effects in MENTS devices with perforated plates for small amplitude vibration. Microsyst Technol 13(7):625–633CrossRefGoogle Scholar
  25. Forbest RG (1997) Understanding how the liquid-metal ion source works. Vacuum 48(1):85–97CrossRefGoogle Scholar
  26. Freeman D, Madden S, Luther-Davies B (2005) Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam. Opt Express 13(8):3079–3086CrossRefGoogle Scholar
  27. Frey L, Lehrer C, Ryssel H (2003) Nanoscale effects in focused ion beam processing. Appl Phys A Mater 76(7):1017–1023CrossRefGoogle Scholar
  28. Fu YQ, Bryan NKA (2005). Investigation of aspect ratio of hole drilling from micro to nanoscale via focused ion beam fine milling. In: Innovation in manufacturing systems and technology (IMST), vol 01Google Scholar
  29. Fu YQ, Ngoi BKA (2001) Investigation of diffractive–refractive microlens array fabricated by focused ion beam technology. Opt Eng 40(4):511–516CrossRefGoogle Scholar
  30. Fu YQ, Bryan NKA, Shing ON, Hung NP (2000) Influence of the redeposition effect for focused ion beam 3D micromachining in silicon. Int J Adv Manuf Tech 16(12):877–880CrossRefGoogle Scholar
  31. Gao Y, Chen TN, Wang XP (2011) Numerical modeling of a novel degradable drug delivery system with microholes. Microsyst Technol 17(3):387–394CrossRefGoogle Scholar
  32. Gierak J (2009) Focused ion beam technology and ultimate applications. Semicond Sci Technol 24(4):043001CrossRefGoogle Scholar
  33. Glass GA, Dias JF, Dymnikov AD, Rout B (2008) 900 keV gold ion sputter etching of silicon and metals. Nucl Instrum Methods Phys Res Sect B 266(14):3330–3331CrossRefGoogle Scholar
  34. Haythornthwaite R, Nxumalo J, Phaneuf MW (2004) Use of the focused ion beam to locate failure sites within electrically erasable read only memory microcircuits. J Vac Sci Technol A 22(3):902–907CrossRefGoogle Scholar
  35. Hoffmann P, Van den Bergh H, Flicstein J, Assayag GB, Gierak J, Bresse JF (1991) Direct writing of iridium lines with a focused ion beam. J Vac Sci Technol B Microelectron Nanom Struct 9(6):3483–3486CrossRefGoogle Scholar
  36. Homentcovschi D, Miles RN (2005) Viscous damping of perforated planar micromechanical structures. Sens Actuator A Phys 119(2):544–552CrossRefGoogle Scholar
  37. Jacques G, Ralf J, Peter H (2012) Nanofabrication with focused ion beams. In: Nanofabrication handbook. CRC Press, pp 41–84Google Scholar
  38. Ji L (2007) Plasma ion sources and ion beam technology in microfabrications. ProQuest, USAGoogle Scholar
  39. Kandlikar SG, Hayner CN (2009) Liquid cooled cold plates for industrial high-power electronic devices thermal design and manufacturing considerations. Heat Transf Eng 30(12):918–930CrossRefGoogle Scholar
  40. Karrea PSK, Bergstrom PL, Mallick G, Karna SP (2007) Room temperature operational single electron transistor fabricated by focused ion beam deposition. J Appl Phys 102(2):024316CrossRefGoogle Scholar
  41. Kim HB, Hobler G, Lugstein A, Bertagnolli E (2007) Simulation of ion beam induced micro/nano fabrication. J Micromech Microeng 17(6):1178–1183CrossRefGoogle Scholar
  42. Kim JH, Boo JH, Kim YJ (2008) Effect of stage control parameters on the FIB milling process. Thin Solid Films 516(19):6710–6714CrossRefGoogle Scholar
  43. Kim C-S, Ahn S-H, Jang D-Y (2012) Review: developments in micro/nanoscale fabrication by focused ion beams. Vacuum 86(8):1014–1035CrossRefGoogle Scholar
  44. Krueger R (1999) Dual-column (FIB–SEM) wafer applications. Micron 30(3):221–226CrossRefGoogle Scholar
  45. Langford RM, Petford-Long AK (2001) Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J Vac Sci Technol A Vac Surf Films 19(5):2186–2193CrossRefGoogle Scholar
  46. Langford RM, Nellen PM, Gierak J, Fu Y (2007) Focused ion beam micro-and nanoengineering. MRS Bull 32(5):417–423CrossRefGoogle Scholar
  47. Latif A (2000) Nanofabrication using focused ion beam. University of Cambridge, CambridgeGoogle Scholar
  48. Lee SH, Kang HW, Cho DW, Moon W (2007) Study on the method for the reliability test of focused ion beam. Microsyst Technol 13(5–6):569–577CrossRefGoogle Scholar
  49. Li YJ, Xie HM, Guo BQ, Luo Q, Gu CZ, Xu MQ (2010) Fabrication of high-frequency moire gratings for microscopic deformation measurement using focused ion beam milling. J Micromech Microeng 20(5):055037CrossRefGoogle Scholar
  50. Lim HS, Wong YS, Rahman M, Lee MKE (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Tech 140:318–325CrossRefGoogle Scholar
  51. Lim YC, Kouzani AZ, Duan W (2010) Lab-on-a-chip: a component view. Microsyst Technol 16(12):1995–2015CrossRefGoogle Scholar
  52. Lindquist NC, Nagpal P, McPeak KM, Norris DJ, Oh S-H (2012) Engineering metallic nanostructures for plasmonics and nanophotonics. Rep Prog Phys 75(3):036501CrossRefGoogle Scholar
  53. Liu C, Xia Z, Czernuszka J (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064CrossRefGoogle Scholar
  54. Lombardo JJ, Ristau RA, Harris WM, Chiu WKS (2012) Focused ion beam preparation of samples for X-ray nanotomography. J Synchrotron Radiat 19:789–796CrossRefGoogle Scholar
  55. Lugstein A, Basnar B, Smoliner J, Bertagnolli E (2003) FIB processing of silicon in the nanoscale regime. Appl Phys A Mater 76(4):545–548CrossRefGoogle Scholar
  56. Lugstein A, Basnar B, Bertagnolli E (2004) Size and site controlled Ga nanodots on GaAs seeded by focused ion beams. J Vac Sci Technol B 22(3):888–892CrossRefGoogle Scholar
  57. Lugstein A, Steiger-Thirsfeld A, Basnar B, Hyun YJ, Pongratz P, Bertagnolli E (2009) Impact of fluence-rate related effects on the sputtering of silicon at elevated target temperatures. J Appl Phys 105(4):044912CrossRefGoogle Scholar
  58. Maas D, van Veldhoven E, Chen P, Sidorkin V, Salemink H, van der Drift E, Alkemade P (2010) Nanofabrication with a helium ion microscope. In: Proceeding of the SPIE, p 763814Google Scholar
  59. Malek CK, Hartley FT, Neogi J (2003) Fast prototyping of high-aspect ratio, high-resolution X-ray masks by gas-assisted focused ion beam. Microsyst Technol 9(6–7):409–412CrossRefGoogle Scholar
  60. Matsui S, Ochiai Y (1996) Topical review: focused ion beam applications to solid state devices. Nanotechnology 7:247–258CrossRefGoogle Scholar
  61. Melngailis J (1987) Focused ion-beam technology and applications. J Vac Sci Technol B 5(2):469–495CrossRefGoogle Scholar
  62. Munroe PR (2009) The application of focused ion beam microscopy in the material sciences. Mater Charact 60(1):2–13CrossRefGoogle Scholar
  63. Nellen PM, Bronnimann R (2006) Milling micro-structures using focused ion beams and its application to photonic components. Meas Sci Technol 17(5):943–948CrossRefGoogle Scholar
  64. Nellen PM, Callegari V, Hofmann J, Platzgummer E, Klein C (2006) FIB precise prototyping and simulation. In: MRS online proceedings library, vol 960Google Scholar
  65. Nenadović T, Perraillon B, Bogdanov Ž, Djordjević Z, Milić M (1990) Sputtering and surface topography of oxides. Nucl Instrum Methods Phys Res Sect B 48(1):538–543CrossRefGoogle Scholar
  66. Orloff J (1993) High-resolution focused ion-beams. Rev Sci Instrum 64(5):1105–1130CrossRefGoogle Scholar
  67. Patterson N, Adams DP, Hodges VC, Vasile MJ, Michael JR, Kotula PG (2008) Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection. Nanotechnology 19(23):235304CrossRefGoogle Scholar
  68. Prenitzer B, Urbanik-Shannon C, Giannuzzi L, Brown S, Irwin R, Shofner T, Stevie F (2003) The correlation between ion beam/material interactions and practical FIB specimen preparation. Microsc Microanal 9(03):216–236CrossRefGoogle Scholar
  69. Raffa V, Castrataro P, Menciassi A, Dario P (2006a) Focused ion beam as a scanning probe: methods and applications. In: Bhushan B, Fuchs H (eds) Applied scanning probe methods II. Springer, Berlin/Heidelberg, pp 361–412CrossRefGoogle Scholar
  70. Raffa V, Pensabene V, Menciassi A, Dario P (2006b) A methodology for high precision fabrication, modification and characterization of neural interfaces. In: 2006 1st IEEE RAS-EMBS International conference on biomedical robotics and biomechatronics, vol 1–3, pp 692–697Google Scholar
  71. Rajsiri S, Kempshall B, Schwarz S, Giannuzzi L (2002) FIB damage in silicon: amorphization or redeposition? Microsc Microanal 8(02):50–51Google Scholar
  72. Reyntjens S, Puers R (2000) Focused ion beam induced deposition: fabrication of three-dimensional microstructures and Young’s modulus of the deposited material. J Micromech Microeng 10(2):181–188CrossRefGoogle Scholar
  73. Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11(4):287–300CrossRefGoogle Scholar
  74. Salic A, Tusek A, Zelic B (2012) Application of microreactors in medicine and biomedicine. J Appl Biomed 10(3):137–153CrossRefGoogle Scholar
  75. Sen MH, Shan HS (2005) A review of electrochemical macro- to micro-hole drilling processes. Int J Mach Tool Manuf 45(2):137–152CrossRefGoogle Scholar
  76. Shen SC, Pan CT, Wang YR, Chang CC (2006) Fabrication of integrated nozzle plates for inkjet print head using microinjection process. Sens Actuator A Phys 127(2):241–247CrossRefGoogle Scholar
  77. Smentkowski VS (2000) Trends in sputtering. Prog Surf Sci 64(1–2):1–58CrossRefGoogle Scholar
  78. Soden JM, Anderson RE (1993) IC failure analysis: techniques and tools for quality reliability improvement. Proc IEEE 81(5):703–715CrossRefGoogle Scholar
  79. Stevie F, Griffis D and Russell P (2005) Focused ion beam gases for deposition and enhanced etch. In: Introduction to focused ion beams, pp 53–72Google Scholar
  80. Stroud RM (2005) Clues to stellar evolution from microscopy of star dust. NRL Review, Material Science and Technology Division. In: DTIC documentGoogle Scholar
  81. Tan B (2006) Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses. J Micromech Microeng 16(1):109–112CrossRefGoogle Scholar
  82. Tixier A, Griscom L, Cozic K, Nagai H, Le Pioufle B, Murakami Y, Tamiya E, Fujita H (2000) Catching and attaching cells using an array of microholes. In: Microtechnologies in medicine and biology, 1st annual international, conference on 2000, pp 36–40Google Scholar
  83. Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14(4):R15–R34CrossRefGoogle Scholar
  84. Tseng AA, Insua IA, Park JS, Li B, Vakanas GP (2004) Milling of submicron channels on gold layer using double charged arsenic ion beam. J Vac Sci Technol B 22(1):82–89CrossRefGoogle Scholar
  85. Tseng AA, Insua IA, Park JS, Chen CD (2005) Milling yield estimation in focused ion beam milling of two-layer substrates. J Micromech Microeng 15(1):20–28CrossRefGoogle Scholar
  86. Urbánek M, Šikola T (2012) Focused ion beam fabrication of metallic nanostructures. In: Vistas in nanofabrication, vol 207Google Scholar
  87. Urbanek M, Uhlir V, Babor P, Kolibalova E, Hrncir T, Spousta J, Sikola T (2010) Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process. Nanotechnology 21(14):145304CrossRefGoogle Scholar
  88. Utke I, Hoffmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26(4):1197–1276CrossRefGoogle Scholar
  89. Veloso JFCA, Amaro F, dos Santos JMF, Mir JA, Derbyshire GE, Stephenson R, Rhodes NJ, Schooneveld EM (2004) Application of the microhole and strip plate detector for neutron detection. IEEE T Nucl Sci 51(5):2104–2109CrossRefGoogle Scholar
  90. Wang G, Liu J, Zheng Z, Xiao J, Zhang J (2011) A fast  response suspended core fiber optical gas sensor with side-opening and micro-holes configurations. In: Proceedings of the SPIE, vol 7753, p 77537TGoogle Scholar
  91. Wu BQ, Kumar A, Pamarthy S (2010) High aspect ratio silicon etch: a review. J Appl Phys 108(5):051101CrossRefGoogle Scholar
  92. Xu ZW, Fang FZ, Gao HF, Zhu YB, Wu W, Weckenmann A (2012) Nano fabrication of star structure for precision metrology developed by focused ion beam direct writing. CIRP Ann Manuf Technol 61(1):511–514CrossRefGoogle Scholar
  93. Yahiaoui R, Zeggari R, Malapert J, Manceau JF (2012) A MEMS-based pneumatic micro-conveyor for planar micromanipulation. Mechatronics 22(5):515–521CrossRefGoogle Scholar
  94. Yao N (2005) Focused ion beam system—a multifunctional tool for nanotechnology. In: Handbook of Microscopy for Nanotechnology, pp 247–286Google Scholar
  95. Youn SW, Takahashi M, Goto H, Maeda R (2006) Microstructuring of glassy carbon mold for glass embossing—comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining. Microelectron Eng 83(11–12):2482–2492CrossRefGoogle Scholar
  96. Youn SW, Okuyama C, Takahashi M, Maeda R (2008) A study on fabrication of silicon mold for polymer hot-embossing using focused ion beam milling. J Mater Process Techol 201(1–3):548–553CrossRefGoogle Scholar
  97. Yu ZY, Zhang Y, Li J, Luan J, Zhao F, Guo D (2009) High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM. CIRP Ann Manuf Technol 58(1):213–216CrossRefGoogle Scholar
  98. Zhang S, Fang F, Hu X (2007) Advances of focused ion beam in micromachining technology. In: Proceedings of SPIE, International Society for Optical Engineering, vol 6724, p 67240EGoogle Scholar
  99. Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56(2):145–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fatin Syazana Jamaludin
    • 1
  • Mohd Faizul Mohd Sabri
    • 1
  • Suhana Mohd Said
    • 2
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Electrical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations