Microsystem Technologies

, Volume 20, Issue 3, pp 437–444 | Cite as

Oscillations in light-triggered logic microfluidic circuit

  • Marco A. Cartas-Ayala
  • Laura Gilson
  • Chong Shen
  • Rohit Karnik
Technical Paper


Control of droplets in microfluidic environments has numerous applications ranging from analysis and sample preparation for biomaterials synthesis (Mann and Ozin Nature 382:313–318, 1996) and medical diagnostics (Pipper et al. Nat Med 13:1259–1263, 2007) to photonics (Schmidt and Hawkins Nat Photonics 5:598–604, 2011). Here we study the oscillations present in a microfluidic circuit capable of sorting curable droplets on demand by triggering the circuit with UV-light. Prior to this paper we showed that a simple circuit can self-sort particles and produce a binary output, sorted or rejected stream of particles, based on the hydrodynamic resistance induced by the particles as they flow through the microfluidic channels. We showed that the cross-linking of droplets can modulate the resistance, and demonstrated particle switching by sorting of otherwise identical droplets of uncured and cured photocurable solution immersed in mineral oil solution. Before arriving at the sorting circuit, droplets made of a photocurable solution were illuminated by a UV-light from a mercury lamp, curing them. By tuning the outlet pressures, the switching threshold could be tuned so that uncured droplets were rejected while cured droplets were switched (Raafat et al. μTAS Proc 1826–1828, 2010; Cartas-Ayala et al. Small 9:375–381, 2013). Here we use this system to study the oscillations in this circuit due to particle–particle interactions in the circuit. The circuit oscillation can be used as a counter with a light ON/OFF switch. The circuit behavior agrees well with theoretical predictions of droplet oscillations. Furthermore, the circuit oscillations can be switched on or off by UV-light illumination. This experiment demonstrates switching of particles based on deformability, illustrates the switching of particles by using light, and the possibility of creating new managing schemes for droplets by combining light control with droplet generation-rate control.


  1. Ahn B, Lee K, Lee H et al (2011) Parallel synchronization of two trains of droplets using a railroad-like channel network. Lab Chip 11:3956–3962. doi:10.1039/C1LC20690G CrossRefGoogle Scholar
  2. Beech JP, Holm SH, Adolfsson K, Tegenfeldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12:1048. doi:10.1039/c2lc21083e CrossRefGoogle Scholar
  3. Cartas-Ayala M, Gilson L, Shen C, Karnik R (2013) Self-sorting of deformable particles in an asynchronous logic microfluidic circuit. Small 9:375–381. doi:10.1002/smll.201201422 CrossRefGoogle Scholar
  4. Cheow LF, Yobas L, Kwong D-L (2007) Digital microfluidics: droplet based logic gates. Appl Phys Lett, vol 90, pp 3. doi:10.1063/1.2435607 CrossRefGoogle Scholar
  5. Dendukuri D, Pregibon DC, Collins J et al (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5:365–369. doi:10.1038/nmat1617 CrossRefGoogle Scholar
  6. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046. doi:10.1039/B912547G CrossRefGoogle Scholar
  7. Glawdel T, Elbuken C, Ren C (2011) Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11:3774–3784. doi:10.1039/c1lc20628a CrossRefGoogle Scholar
  8. Gossett D, Weaver W, Mach A et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267. doi:10.1007/s00216-010-3721-9 CrossRefGoogle Scholar
  9. He M, Edgar JS, Jeffries GDM et al (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544. doi:10.1021/ac0480850 CrossRefGoogle Scholar
  10. Jousse F, Farr R, Link DR et al (2006) Bifurcation of droplet flows within capillaries. Phys Rev E 74:036311. doi:10.1103/PhysRevE.74.036311 CrossRefGoogle Scholar
  11. Lai C-W, Lin Y-H, Lee G-B (2008) A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches. Biomed Microdevices 10:749–756. doi:10.1007/s10544-008-9186-3 CrossRefGoogle Scholar
  12. Link DR, Grasland-Mongrain E, Duri A et al (2006) Electric control of droplets in microfluidic devices. Angew Chem 118:2618–2622. doi:10.1002/ange.200503540 CrossRefGoogle Scholar
  13. Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318. doi:10.1038/382313a0 CrossRefGoogle Scholar
  14. Pipper J, Inoue M, Ng LF-P et al (2007) Catching bird flu in a droplet. Nat Med 13:1259–1263. doi:10.1038/nm1634 CrossRefGoogle Scholar
  15. Pompano RR, Liu W, Du W, Ismagilov RF (2011) Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. Annu Rev Anal Chem 4:59–81. doi:10.1146/annurev.anchem.012809.102303 CrossRefGoogle Scholar
  16. Prakash M, Gershenfeld N (2007) Microfluidic bubble logic. Science 315:832–835. doi:10.1126/science.1136907 CrossRefGoogle Scholar
  17. Raafat MS, Cartas-Ayala M, Karnik R (2010) Self-sorting of deformable particles in a microfluidic circuit. μTAS Proc 14:1826–1828Google Scholar
  18. Salmon J-B, Leng J (2009) Microfluidics for kinetic inspection of phase diagrams. C R Chim 12:258–269. doi:10.1016/j.crci.2008.06.016 CrossRefGoogle Scholar
  19. Schmidt H, Hawkins AR (2011) The photonic integration of non-solid media using optofluidics. Nat Photonics 5:598–604. doi:10.1038/nphoton.2011.163 CrossRefGoogle Scholar
  20. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220. doi:10.1039/B715524G CrossRefGoogle Scholar
  21. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166. doi:10.1103/PhysRevLett.86.4163 CrossRefGoogle Scholar
  22. Vestad T, Marr DWM, Munakata T (2004) Flow resistance for microfluidic logic operations. Appl Phys Lett 84:5074–5075. doi:10.1063/1.1764592 CrossRefGoogle Scholar
  23. Xu Q, Hashimoto M, Dang TT et al (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5:1575–1581. doi:10.1002/smll.200801855 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco A. Cartas-Ayala
    • 1
  • Laura Gilson
    • 1
  • Chong Shen
    • 1
  • Rohit Karnik
    • 1
  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations