Advertisement

Microsystem Technologies

, Volume 20, Issue 7, pp 1299–1310 | Cite as

Design, fabrication and characterization of a piezoelectrically actuated bidirectional polymer micropump

  • H. FethEmail author
  • F. Pothof
  • F. Thoma
  • T. Schmidt
  • C. Mueller
  • F. Goldschmidtboeing
  • P. Woias
Technical Paper

Abstract

We present the design, fabrication and characterization of a new, piezoelectrically actuated fully polymeric three chamber peristaltic micropump. An optimized bimorph bending actuator has been designed to deform the polymer membranes in an optimal and most-efficient way. The piezoelectric actuators of the micropump are driven with actuation voltages of ±260 V. The pump has a total size of 46 × 18 × 4 mm, is produced by hot embossing and is assembled in a very simple way. The presented design is able to pump water with a flow rate of 4.8 ml/min and achieves a maximum back pressure of app. 200 mBar.

Keywords

Piezoelectric Actuator Actuation Voltage Neutral Plane Flexure Hinge Valve Seat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Boehm S, Olthuis W, Bergveld P (1999) A plastic micropump constructed with conventional techniques and materials. Sens Actuators A 77(3):223–228CrossRefGoogle Scholar
  2. Bruus H (2008) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  3. Deshpande M, Saggere L (2007) An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator. Sens Actuators A 136(2):673–689CrossRefGoogle Scholar
  4. Dobrucki AB, Pruchnicki P (1997) Theory of piezoelectric axisymmetric bimorph. Sens Actuators A 58(3):203–212CrossRefGoogle Scholar
  5. Doll A, Heinrichs M, Goldschmidtboeing F, Schrag HJ, Hopt UT, Woias P (2006) A high performance bidirectional micropump for a novel artificial sphincter system. Sens Actuator A-Phys 130:445–453CrossRefGoogle Scholar
  6. Feth H, Esch M, Mueller C, Thoma F, Biancuzzi G, Lemke T, Goldschmidtboeing F, Woias P (2011) Design and characterization of a low-voltage piezoelectrically actuated polymer membrane. In: Transducers, 2011, pp 470–473Google Scholar
  7. Goldschmidtboing F, Doll A, Heinrichs M, Woias P, Schrag HJ, Hopt UT (2005) A generic analytical model for micro-diaphragm pumps with active valves. J Micromech Microeng 15(4):673–683CrossRefGoogle Scholar
  8. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64CrossRefGoogle Scholar
  9. Lemke T, Biancuzzi G, Feth H, Huber J, Goldschmidtboing F, Woias P (2011a) Fabrication of normally-closed bidirectional micropumps in silicon-polymer technology featuring photopatternable silicone valve lips. Sens Actuator A-Phys 168(1):213–222CrossRefGoogle Scholar
  10. Lemke T, Kloeker J, Biancuzzi G, Huesgen T, Goldschmidtboeing F, Woias P (2011b) Fabrication of a normally-closed microvalve utilizing lithographically defined silicone micro O-rings. J Micromech Microeng 21(2):234–237Google Scholar
  11. Nguyen NT, Truong TQ (2004) A fully polymeric micropump with piezoelectric actuator. Sens Actuator B-Chem 97(1):137–143CrossRefGoogle Scholar
  12. Nguyen NT, Huang XY, Chuan TK (2002) MEMS-micropumps: a review. J Fluids Eng Trans ASME 124(2):384–392CrossRefGoogle Scholar
  13. Nisar A, AftuIpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuator B-Chem 130(2):917–942CrossRefGoogle Scholar
  14. Reinecke H, Mueller C, Jurischka R, Brenner T (2005) Hot embossing for the rapid prototyping of microstructured polymers in 4M2005 conference on multi-material micro manufacture, pp 3–9Google Scholar
  15. Smits JG (1990) Piezoelectric micropump with 3 valves working peristaltically. Sens Actuator A-Phys 21(1–3):203–206CrossRefGoogle Scholar
  16. Steigert J, Haeberle S, Brenner T, Mueller C, Steinert CP, Koltay P, Gottschlich N, Reinecke H, Ruehe J, Zengerle R, Ducrée J (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17(2):333–341CrossRefGoogle Scholar
  17. Timoshenko SP, Woinowsky-Krieger S (1987) Theory of plates and shells, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  18. Woias P (2005) Micropumps-past, progress and future prospects. Sens Actuator B-Chem 105(1):28–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • H. Feth
    • 1
    Email author
  • F. Pothof
    • 1
  • F. Thoma
    • 1
  • T. Schmidt
    • 2
  • C. Mueller
    • 2
  • F. Goldschmidtboeing
    • 1
  • P. Woias
    • 1
  1. 1.Laboratory for Design of Microsystems, IMTEKUniversity of FreiburgFreiburgGermany
  2. 2.Laboratory for Process Technology, IMTEKUniversity of FreiburgFreiburgGermany

Personalised recommendations