Microsystem Technologies

, Volume 19, Issue 9–10, pp 1351–1355

Feedforward stability control of active slider in sub-nanometer spacing regime

Technical Paper


This paper proposes a feedforward control scheme to control the bouncing instability of active-head air-bearing slider. The principle of the scheme for stability control of bouncing slider is discussed. Simulation results show that the control scheme is proved to be able to substantially reduce the bouncing vibrations. Compared to other controllers, the proposed scheme is less computationally intensive and is thus suitable for real time implementation.


  1. Badertscher J, Cunefare KA, Aldo A (2007) Ferri braking impact of normal dither signals. ASME 129:17Google Scholar
  2. Boettcher U, Li H, de Callafon RA, Talke FE (2011) Dynamic flying height adjustment in hard disk drives through feed forward control. IEEE Trans Magn 47(1823):1829Google Scholar
  3. Canchi SV, Bogy D (2010) Slider dynamics in the lubricant-contact regime. IEEE Trans Magn 46(3):764–769CrossRefGoogle Scholar
  4. Canchi SV, Bogy DB, Wang R-H, Murthy AN (2012) Parametric investigations at the head-disk interface of thermal fly-height control sliders in contact. Adv Tribol 2012 (Article ID 303071)Google Scholar
  5. Cuberes T (2007) Nanoscale friction and ultrasonics. In: Meyer E (ed) Fundamentals of friction and wear. Springer, BerlinGoogle Scholar
  6. Dinelli F, Biswas SK, Briggs GAD, Kolosov OV (1997) Ultrasound induced lubricity in microscopic contact. Appl Phys Lett 71(9):1177–1181Google Scholar
  7. Feeny BF, Moon FC (2000) Quenching stick-slip chaos with dither. J Sound Vib 237:173–180CrossRefGoogle Scholar
  8. Gelb A, Velde WEV (1968) Multiple-input describing functions and nonlinear system design McGraw-Hill, New YorkGoogle Scholar
  9. Gelb A, Warren RS (1973) Direct statistical analysis of nonlinear systems: cADET. AIAA J 11(5):689–694CrossRefGoogle Scholar
  10. Hesjedal T, Behme G (2002) The origin of ultrasound-induced friction reduction in microscopic mechanical contacts. IEEE Trans Ultrason Ferroelectr Freq Control 49(3):356–364CrossRefGoogle Scholar
  11. Hua W, Liu B, Yu S, Zhou W (2009) Nanoscale roughness contact in a slider–disk interface. Nanotechnology 20:285710CrossRefGoogle Scholar
  12. Kaajakari’ V, Kana S-H, Lifla L-J, Lala A, Rodgers S (2000) Ultrasonic actuation for MEMS dormancy-related stiction reduction, MEMS reliability for critical applications. In: Lawton RA (ed) Proceedings of SPIE, vol 4180 Google Scholar
  13. Kiely JD, Hsia YT (2008) Slider dynamic motion during writer-induced head-disk contact. Microsyst Technol 14(3):403–409CrossRefGoogle Scholar
  14. Knigge B, Talke FE (2001) Dynamics of transient events at the head/disk interface. Tribol Int 34(7):453–460CrossRefGoogle Scholar
  15. Lee S, Meerkov SM (1991) Generalized dither. Int J Control 53(4):741–747MathSciNetCrossRefGoogle Scholar
  16. Mate CM, Arnett PC, Baumgart P et al (2004) Dynamics of contacting head-disk interfaces. IEEE Trans Magn 40(4):3156–3158CrossRefGoogle Scholar
  17. Morgul O (1999) On the control of chaotic systems in Lurie form by using dither. IEEE Trans Circuits Syst I 46:1301–1305CrossRefGoogle Scholar
  18. Naniwa I, Sato K, Nakamura S, Sato K (2009) Active-head slider with piezoelectric actuator using shear-mode deformation. Microsyst Technol 15:1619–1627CrossRefGoogle Scholar
  19. Ono K (2009) Contact characteristics of spherical head and magnetic disk considering van der Waals forces and elastic deformation of contacting asperities and mean height surfaces. IEEE Trans Magn 45(10):3612–3615CrossRefGoogle Scholar
  20. Salas PA, Boettcher U, Talke FE (2012) Time dependent simulation of active flying height control of TFC sliders. Microsyst Technol 18:1661–1667CrossRefGoogle Scholar
  21. Sheng G (2011) Sensing and identification of nonlinear dynamics of slider with clearance in sub-5 nanometer regime. Adv Tribol 2011 (Article ID 282839)Google Scholar
  22. Tani H, Kanda M, Kubota M, Tagawa N (2009) Study of slider-defect interaction at ultralow flying height by dynamic flying height control. J Appl Phys 105:07B703CrossRefGoogle Scholar
  23. Thomsen JJ (1999) Using fast vibrations to quench friction-induced oscillations. J Sound Vib 228:1079–1102CrossRefGoogle Scholar
  24. Vakis AI, Lee S-C, Polycarpou AA (2009) Dynamic head-disk interface instabilities with friction for light contact (surfing) recording. IEEE Trans Magn 45(11):486–488CrossRefGoogle Scholar
  25. Xu J, Kohira H, Tanaka H, Saegusa S (2005) Partial-contact head-disk interface approach for high-density recording. IEEE Trans Magn 41(10):3031–3033CrossRefGoogle Scholar
  26. Xu JF, Kiely JD, Hsia Y-T, Talke F (2009) Effect of thermal pole tip protrusion and disk roughness on slider disk contacts. Microsyst Technol 15:687–693CrossRefGoogle Scholar
  27. Yu SK, Liu B, Ng KK, Hua W, Zhou WD, Myo KS (2011) Nonlinear dynamics of thermal flying height control sliders at touch-down. IEEE Trans magn 47(7):1798–1804CrossRefGoogle Scholar
  28. Yu SK, Ng KK, Hua W, Zhou WD, Liu B (2012) Dynamics of air bearing-slider-suspension system at surfing state. APMRC (Oct 31 2012–Nov 2)Google Scholar
  29. Zheng J, Bogy DB (2012) Numerical simulation of touchdown dynamics of thermal flying-height control sliders. IEEE Trans Magn 48(9):2415–2420Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Marshall UniversityHuntingtonUSA
  2. 2.Auckland University of TechnologyAucklandNew Zealand
  3. 3.National Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations