Advertisement

Microsystem Technologies

, Volume 20, Issue 2, pp 303–313 | Cite as

Measurement of local electric field in microdevices for low-voltage electroporation of adherent cells

  • Hirofumi ShintakuEmail author
  • Kazumi Hakamada
  • Hiroshi Fujimoto
  • Takeshi Nagata
  • Jun Miyake
  • Satoyuki KawanoEmail author
Technical Paper

Abstract

In this study, we present the measurement of the local electric field in a microdevice designed for electroporation of adherent cells. The microdevice mainly consists of a coverslip that has a transparent conductive layer and an insulating layer. The insulating layer has small cylindrical holes that focus the field lines to reduce the voltage required for electroporation. We estimated the local electric field at the cells by analyzing the ionic current based on a simple equivalent circuit model and investigated the correlation between the field strength and the efficiency of electroporation. We prepared various designs with matrices of electrodes with diameters ranging from 5 to 10 μm and center-to-center distances between adjacent electrodes ranging from 20 to 75 μm to perform systematic and statistical investigations. Furthermore, we discussed the efficiency of the electrode design in terms of the degree of field focusing, the applicability of optical observations, and the probability of positioning cells on the electrodes.

Keywords

Electric Double Layer Pulse Voltage Optical Observation Local Electric Field Electrode Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aluigi M, Fogli M, Curti A, Isidori A, Gruppioni E, Chiodoni C, Colombo MP, Versura P, D’Errico-Grigioni A, Ferri E, Baccarani M, Lemoli RM (2006) Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells. Stem cells 24(2):454–461. doi: 10.1634/stemcells.2005-0198 CrossRefGoogle Scholar
  2. Boukany PE, Morss A, Liao WC, Henslee B, Jung H, Zhang X, Yu B, Wang X, Wu Y, Li L, Gao K, Hu X, Zhao X, Hemminger O, Lu W, Lafyatis GP, Lee LJ (2011) Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol 6(11):747–754. doi: 10.1038/nnano.2011.164 CrossRefGoogle Scholar
  3. Chuang YJ, Tseng FG, Lin WK (2002) Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination. Microsyst Technol 8(4):308–313. doi: 10.1007/s00542-002-0176-8 CrossRefGoogle Scholar
  4. Di Carlo D, Ionescu-Zanetti C, Zhang Y, Hung P, Lee LP (2005) On-chip cell lysis by local hydroxide generation. Lab Chip 5(2):171–178CrossRefGoogle Scholar
  5. Fox M, Esveld D, Valero A, Luttge R, Mastwijk H, Bartels P, van den Berg A, Boom R (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385(3):474–485. doi: 10.1007/s00216-006-0327-3 CrossRefGoogle Scholar
  6. Hakamada K, Shintaku H, Nagata T, Fujimoto H, Kawano S, Miyake J (2013) Development of a microfabricated device for low-voltage electropermeabilization of adherent cells. J Biosci Bioeng 115(3):314–319. doi: 10.1016/j.jbiosc.2012.10.005 CrossRefGoogle Scholar
  7. He H, Chang DC, Lee Y-K (2007) Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells. Bioelectrochemistry 70(2):363–368. doi: 10.1016/j.bioelechem.2006.05.008 CrossRefGoogle Scholar
  8. Huang Y, Rubinsky B (2001) Microfabricated electroporation chip for single cell membrane permeabilization. Sens Actuators A 89(3):242–249. doi: 10.1016/s0924-4247(00)00557-4 CrossRefGoogle Scholar
  9. Huang Y, Rubinsky B (2003) Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation. Sens Actuators A 104(3):205–212. doi: 10.1016/s0924-4247(03)00050-5 CrossRefGoogle Scholar
  10. Huang K-S, Lin Y-C, Su C–C, Fang C-S (2007) Enhancement of an electroporation system for gene delivery using electrophoresis with a planar electrode. Lab Chip 7(1):86–92CrossRefGoogle Scholar
  11. Huang H, Wei Z, Huang Y, Zhao D, Zheng L, Cai T, Wu M, Wang W, Ding X, Zhou Z, Du Q, Li Z, Liang Z (2011) An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab Chip 11(1):163–172CrossRefGoogle Scholar
  12. Jain T, Muthuswamy J (2007) Bio-chip for spatially controlled transfection of nucleic acid payloads into cells in a culture. Lab Chip 7(8):1004–1011CrossRefGoogle Scholar
  13. Jain T, McBride R, Head S, Saez E (2009) Highly parallel introduction of nucleic acids into mammalian cells grown in microwell arrays. Lab Chip 9(24):3557–3566CrossRefGoogle Scholar
  14. Jimbo Y, Kasai N, Torimitsu K, Tateno T, Robinson HPC (2003) A system for MEA-based multisite stimulation. IEEE Trans Biomed Eng 50(2):241–248CrossRefGoogle Scholar
  15. Khine M, Lau A, Ionescu-Zanetti C, Seo J, Lee LP (2005) A single cell electroporation chip. Lab Chip 5(1):38–43CrossRefGoogle Scholar
  16. Kurosawa O, Oana H, Matsuoka S, Noma A, Kotera H, Washizu M (2006) Electroporation through a micro-fabricated orifice and its application to the measurement of cell response to external stimuli. Meas Sci Technol 17(12):3127–3133. doi: 10.1088/0957-0233/17/12/S02 CrossRefGoogle Scholar
  17. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J, Forster M, Stocking C, Wahlers A, Frank O, Ostertag W, Kuhlcke K, Eckert HG, Fehse B, Baum C (2002) Murine leukemia induced by retroviral gene marking. Science 296(5567):497. doi: 10.1126/science.1068893 CrossRefGoogle Scholar
  18. Lin Y-C, Li M, Wu C–C (2004) Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement. Lab Chip 4(2):104–108CrossRefGoogle Scholar
  19. Marelli M, Divitini G, Collini C, Ravagnan L, Corbelli G, Ghisleri C, Gianfelice A, Lenardi C, Milani P, Lorenzelli L (2011) Flexible and biocompatible microelectrode arrays fabricated by supersonic cluster beam deposition on. J Micromech Microeng 21(4):045013CrossRefGoogle Scholar
  20. Marie R, Schmid S, Johansson A, Ejsing L, Nordström M, Häfliger D, Christensen CBV, Boisen A, Dufva M (2006) Immobilisation of DNA to polymerised SU-8 photoresist. Biosens Bioelectron 21(7):1327–1332. doi: 10.1016/j.bios.2005.03.004 CrossRefGoogle Scholar
  21. Miyano N, Inoue Y, Teramura Y, Fujii K, Tsumori F, Iwata H, Kotera H (2008) Gene transfer device utilizing micron-spiked electrodes produced by the self-organization phenomenon of Fe-alloy. Lab Chip 8(7):1104–1109CrossRefGoogle Scholar
  22. Neumann E, Schaeferridder M, Wang Y, Hofschneider PH (1982) Gene-transfer into mouse lyoma cells by electroporation in high electric-fields. EMBO J 1(7):841–845Google Scholar
  23. Onuki-Nagasaki R, Nagasaki A, Hakamada K, Uyeda TQP, Fujita S, Miyake M, Miyake J (2008) On-chip screening method for cell migration genes based on a transfection microarray. Lab Chip 8(9):1502–1506CrossRefGoogle Scholar
  24. Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75(3):1415–1423. doi: 10.1016/S0006-3495(98)74060-3 CrossRefGoogle Scholar
  25. Shintaku H, Azuma S, Kawano S (2009) Measurements of electric field and electrokinetic phenomena using two kinds of tracer particles with different mobilities. J Fluid Sci Technol 4(3):687–698CrossRefGoogle Scholar
  26. Singh AV, Lenardi C, Gailite L, Gianfelice A, Milani P (2009) A simple lift-off-based patterning method for micro- and nanostructuring of functional substrates for cell culture. J Micromech Microeng 19(11):115028CrossRefGoogle Scholar
  27. Stroh T, Erben U, Kuhl AA, Zeitz M, Siegmund B (2010) Combined pulse electroporation–a novel strategy for highly efficient transfection of human and mouse cells. PLoS One 5(3):e9488. doi: 10.1371/journal.pone.0009488 CrossRefGoogle Scholar
  28. Techaumnat B, Washizu M (2007) Analysis of the effects of an orifice plate on the membrane potential in electroporation and electrofusion of cells. J Phys D Appl Phys 40(6):1831–1837. doi: 10.1088/0022-3727/40/6/036 CrossRefGoogle Scholar
  29. Valero A, Post JN, van Nieuwkasteele JW, Ter Braak PM, Kruijer W, van den Berg A (2008) Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip 8(1):62–67CrossRefGoogle Scholar
  30. Valley JK, Neale S, Hsu H-Y, Ohta AT, Jamshidi A, Wu MC (2009) Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. Lab Chip 9(12):1714–1720CrossRefGoogle Scholar
  31. Vernier PT, Levine ZA, Wu YH, Joubert V, Ziegler MJ, Mir LM, Tieleman DP (2009) Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One 4(11):e7966. doi: 10.1371/journal.pone.0007966 CrossRefGoogle Scholar
  32. Wang H-Y, Lu C (2006) Electroporation of mammalian cells in a microfluidic channel with geometric variation. Anal Chem 78(14):5158–5164. doi: 10.1021/ac060733n CrossRefGoogle Scholar
  33. Wang M, Orwar O, Olofsson J, Weber S (2010) Single-cell electroporation. Anal Bioanal Chem 397(8):3235–3248. doi: 10.1007/s00216-010-3744-2 CrossRefGoogle Scholar
  34. Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51(4):426–435MathSciNetGoogle Scholar
  35. Winterbourne DJ, Thomas S, Hermon-Taylor J, Hussain I, Johnstone AP (1988) Electric shock-mediated transfection of cells. Characterization and optimization of electrical parameters. Biochem J 251(2):427–434Google Scholar
  36. Xu Y, Yao H, Wang L, Xing W, Cheng J (2011) The construction of an individually addressable cell array for selective patterning and electroporation. Lab Chip 11(14):2417–2423CrossRefGoogle Scholar
  37. Zimmermann U (1986) Electrical breakdown, electropermeabilization and electrofusion. In: Reviews of physiology, biochemistry and pharmacology, vol 105. Springer, Heidelberg, pp 175–256. doi: 10.1007/BFb0034499

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hirofumi Shintaku
    • 1
    • 3
    Email author
  • Kazumi Hakamada
    • 1
  • Hiroshi Fujimoto
    • 1
  • Takeshi Nagata
    • 2
  • Jun Miyake
    • 1
    • 2
  • Satoyuki Kawano
    • 1
    Email author
  1. 1.Department of Mechanical Science and Bioengineering, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Graduate School of Frontier BiosciencesOsaka UniversityToyonakaJapan
  3. 3.Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations