Microsystem Technologies

, Volume 19, Issue 7, pp 1033–1040 | Cite as

A high-efficiency three-dimensional helical micromixer in fused silica

  • Keyin Liu
  • Qing Yang
  • Shengguan He
  • Feng Chen
  • Yulong Zhao
  • Xiaole Fan
  • Lei Li
  • Chao Shan
  • Hao Bian
Technical Paper

Abstract

True three-dimensional (3D) micromixers in fused silica are highly desirable for efficient and compact mixing in microfluidic applications. However, realization of such devices remains technically challenging. Here, we report high-quality fabrication of 3D helical microchannels in fused silica by taking the full advantage of an improved femtosecond laser irradiation followed by chemical etching process, and a glass-PDMS interface structure is introduced for assembling 3D helical micromixer. Highly efficient mixing is achieved in the helical micromixer at low Reynolds numbers, whose excellent mixing performance is approved by the experimental evaluation and computational fluid dynamics simulation.

Supplementary material

542_2012_1695_MOESM1_ESM.doc (4.2 mb)
Supplementary material 1 (DOC 4349 kb)

References

  1. Blazej RG, Kumaresan P, Mathies RA (2006) Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. PNAS 103:7240–7245CrossRefGoogle Scholar
  2. Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, Wang J, Moore H, Rouse R, Umviligihozo G, Karita E, Mwambarangwe L, Braunstein SL, Wijgert JVD, Sahabo R, Justman JE, Sadr WE, Sia SK (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17:1015–1019CrossRefGoogle Scholar
  3. Dean WR, Hurst JM (1927) Note on the motion of fluid in a curved pipe. Phil Mag 4:208–223MATHGoogle Scholar
  4. Dean WR, Hurst JM (1928) The stream-line motion of fluid in a curved pipe. Phil Mag 5:673–695Google Scholar
  5. Jang B, Funakoshi M (2009) Chaotic mixing in a helix-like pipe with periodic variations in curvature and torsion. Fluid Dyn Res 42: 035506Google Scholar
  6. Jani JM, Wessling M, Lammertink RGH (2011) Geometrical influence on mixing in helical porous membrane microcontactors. J Membr Sci 378:351–358CrossRefGoogle Scholar
  7. Kim DS, Lee SH, Kwon TH, Ahn CH (2005) A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5:739–747CrossRefGoogle Scholar
  8. Li Y, Qu SL, Guo ZY (2011) Fabrication of microfluidic devices in silica glass by water-assisted ablation with femtosecond laser pulses. J Micromech Microeng 21:075008Google Scholar
  9. Liao Y, Song J, Li E, Luo Y, Shen Y, Chen D, Cheng Y, Xu ZZ, Sugiokad K, Midorikawa K (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRefGoogle Scholar
  10. Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech S 9:190–197CrossRefGoogle Scholar
  11. Liu HW, Chen F, Yang Q, Si JH, Hou X (2010) Investigation on femtosecond laser-assisted microfabrication in silica glasses. In: Proceedings of SPIE-The International Society for Optical Engineering 7843. doi:10.1117/12.869845
  12. Mansur EA, Ye MX, Wang YD, Dai YY (2008) A state-of-the-art review of mixing in microfluidic mixers. Chin J Chem Eng 16:503–516CrossRefGoogle Scholar
  13. Manz A, Graber N, Widmer HM (2011) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuat B Chem 1:244–248CrossRefGoogle Scholar
  14. Marcinkevicius A, Juodkazis S, Watanabe M, Miwa M, Matsuo S, Misawa H, Nishii J (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRefGoogle Scholar
  15. Sasmito P, Kurnia JC, Mujumdar AS (2012) Numerical evaluation of transport phenomena in a T-junction microreactor with coils of different configurations. Ind Eng Chem Res 51:1970–1980CrossRefGoogle Scholar
  16. Sayah A, Thivolle PA, Parashar VK, Gijs MAM (2010) Three-dimensional mixers with non-planar microchannels in a monolithic glass substrate using oblique powder blasting. J Micromech Microeng 20:085028Google Scholar
  17. Schulze P, Ludwig M, Kohler F, Belder D (2005) Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis. Anal Chem 77:1325–1329CrossRefGoogle Scholar
  18. Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–374CrossRefGoogle Scholar
  19. Ujiie T, Kikuchi T, Ichiki T, Horiike Y (2000) Fabrication of quartz microcapillary electrophoresis chips using plasma etching. Jpn J Appl Phys 39:3677–3682CrossRefGoogle Scholar
  20. Verma MKS, Ganneboyina SR, Vinayak RR, Ghatak A (2008) Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids. Langmuir 24:2248–2251CrossRefGoogle Scholar
  21. Vijayendran RA, Motsegood KM, Beebe DJ, Leckband DE (2003) Evaluation of a three-dimensional micromixer in a surface-based biosensor. Langmuir 19:1824–1828CrossRefGoogle Scholar
  22. Yasui T, Omoto Y, Osato K, Kaji N, Suzuki N, Naito T, Watanabe M, Okamoto Y, Tokeshi M, Shamoto E, Baba Y (2011) Microfluidic baker’s transformation device for three-dimensional rapid mixing. Lab Chip 11:3356–3360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Keyin Liu
    • 1
  • Qing Yang
    • 1
  • Shengguan He
    • 1
  • Feng Chen
    • 1
  • Yulong Zhao
    • 1
  • Xiaole Fan
    • 1
  • Lei Li
    • 1
  • Chao Shan
    • 1
  • Hao Bian
    • 1
  1. 1.State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi ProvinceXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations