Microsystem Technologies

, Volume 19, Issue 5, pp 705–712 | Cite as

The effect of atmospheric moisture on crack propagation in the interface between directly bonded silicon wafers

  • V. Masteika
  • J. Kowal
  • N. St. J. Braitwaite
  • T. Rogers
Technical Paper

Abstract

Infra-red video sequences were taken of directly bonded silicon wafer pairs undergoing the razor blade crack length bond strength measurement in a specially designed jig. A series of tests were carried out under controlled atmospheres of nitrogen at various relative humidities. Analysis of the video images showed that the crack continues to propagate rapidly for several minutes after the blade has stopped moving, and that the presence of moisture has a strong positive influence on the rate of crack propagation under static loading. A new Maszara protocol is suggested based on modelling crack growth using our experimentally derived constants.

Notes

Acknowledgments

We would like to thank the EPSRC and AML for their support and partnership in this work undertaken as part of a CASE funded studentship.

References

  1. Bagdahn J, Petzold M (2001) Fatigue of directly wafer-bonded silicon under static and cyclic loading. Microsyst Technol 7(4):175–182. doi: 10.1007/s005420000085 CrossRefGoogle Scholar
  2. Ciccotti M (2009) Stress-corrosion mechanisms in silicate glasses. J Phys D Appl Phys 42(21). doi: 10.1088/0022-3727/42/21/214006
  3. Freiman SW, Wiederhorn SM, Mecholsky JJ Jr (2009) Environmentally enhanced fracture of glass: a historical perspective. J Am Ceram Soc 92(7):1371–1382. doi: 10.1111/j.1551-2916.2009.03097.x CrossRefGoogle Scholar
  4. Gy R (2003) Stress corrosion of silicate glass: a review. J Non-Cryst Solids 316(1):1–11. doi: 10.1016/s0022-3093(02)01931-2 CrossRefGoogle Scholar
  5. Kowal J, Nixon T, Aitken N, Braithwaite NSJ (2009) Surface activation for low temperature wafer fusion bonding by radicals produced in an oxygen discharge. Sens Actuators A 155(1):145–151. doi: 10.1016/j.sna.2009.08.018 CrossRefGoogle Scholar
  6. Martini T, Steinkirchner J, Gösele U (1997) The crack opening method in silicon wafer bonding: how useful is it? J Electrochem Soc 144(1):354–357CrossRefGoogle Scholar
  7. Maszara WP, Goetz G, Caviglia A, McKitterick JB (1988) Bonding of silicon wafers for silicon-on-insulator. J Appl Phys 64(10):4943–4950CrossRefGoogle Scholar
  8. Takagi H, Maeda R, Suga T (2003) Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature. Sens Actuators A 105(1):98–102CrossRefGoogle Scholar
  9. Thomson R, Hsieh C, Rana V (1971) Lattice trapping of fracture cracks. J Appl Phys 42(8):3154–3160. doi: 10.1063/1.1660699 CrossRefGoogle Scholar
  10. Tong QY, Gösele U (1996) A model of low-temperature wafer bonding and its applications. J Electrochem Soc 143(5):1773–1779CrossRefGoogle Scholar
  11. Tong Q-Y, Cha G, Gafiteanu R, Gösele U (1994) Low temperature wafer direct bonding. J Microelectromech Syst 3(1):29–35CrossRefGoogle Scholar
  12. Turner KT, Spearing SM (2008) Accurate characterization of wafer bond toughness with the double cantilever specimen. J Appl Phys 103(1). doi: 10.1063/1.2828156
  13. Vallin O, Jonsson K, Lindberg U (2005) Adhesion quantification methods for wafer bonding. Mater Sci Eng R: Rep 50(4–5):109–165CrossRefGoogle Scholar
  14. Wiederhorn SM, Bolz LH (1970) Stress corrosion and static fatigue of glass. J Am Ceram Soc 53(10):543–548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. Masteika
    • 1
  • J. Kowal
    • 1
  • N. St. J. Braitwaite
    • 1
  • T. Rogers
    • 2
  1. 1.The Open UniversityMilton KeynesUK
  2. 2.Applied Microengineering LimitedDidcotUK

Personalised recommendations