Microsystem Technologies

, Volume 19, Issue 3, pp 445–453 | Cite as

Transparent thin thermoplastic biochip by injection-moulding and laser transmission welding

  • Akanksha Singh
  • Wilhelm Pfleging
  • Markus Beiser
  • Chantal Khan Malek
Technical Paper

Abstract

Recently microfluidic devices have emerged as a viable technology for the miniaturization of high throughput tools for analytical tasks related to structural biology such as screening of crystallization conditions and structural analysis. This work reports the manufacture of microfluidic chips in transparent thermoplastic polymers [poly(methylmethacrylate) (PMMA), and cyclic olefin copolymer (COC)] using two complementary technologies, injection moulding for the fabrication of the fluidic level and laser transmission welding for the sealing of the cover. A steel mould insert was produced by laser micro caving using a solid state laser radiation source (Nd:YAG, wavelength 1,064 nm). Fluidic chips of ~670 μm thickness comprising channels of 50 μm depth and width down to 50 μm were injection moulded in PMMA and COC. Joining of transparent thin cover film to the micro-injected fluidic level was performed by laser transmission welding using high power diode laser radiation (wavelength 940 nm) and an intermediate thin absorbing layer with a thickness of about several nanometers.

Keywords

Microfluidic chip Thermoplastic Mould insert Injection moulding Laser welding Laser structuring 

Notes

Acknowledgments

This work was carried out in part within the framework of the PNANO programme from the French National Agency for Research (ANR) project: Chip X-ANR-07-NANO-060-02, and in part within the framework of the Carnot-Fraunhofer PICF programme (3μP project: Multi-Reaction, Multi-Sample Micro-Fluidic Platform). In particular, A. Singh would like to thank the 3μP programme for financial support. The mould manufacture and laser welding of biochips was carried out with the support of the European Research Infrastructure EUMINA fab programme (funded under the FP7 specific programme Capacities, Grant Agreement Number 226460). Finally, the support by the Karlsruhe Nano Micro Facility (KNMF, http://www.knmf.kit.edu/) for laser processing is gratefully acknowledged.

References

  1. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111CrossRefGoogle Scholar
  2. Bundgaard F, Perozziello G, Geschke O (2005) Rapid prototyping of all-COC/Topas® fluidic Microsystems. In: Proceedings of the 1st international conference on multi-material micro manufacture (4M), 29 juin-1 juillet 2005, Karlsruhe, Allemagne, pp 405–407Google Scholar
  3. Dang F, Shinohara S, Tabata O, Yamaoka Y, Kurokawa M, Shinohara Y, Ishikawa M, Baba Y (2005) Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method. Lab Chip 5:472–478CrossRefGoogle Scholar
  4. Dhouib K, Khan-Malek C, Pfleging W, Gauthier-Manuel B, Duffait R, Thuillier G, Ferrigno R, Jacquamet L, Ohana J, Ferrer JL, Théobald-Dietrich A, Giegé R, Lorber B, Sauter C (2009) Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip 9(10):1412–1421CrossRefGoogle Scholar
  5. Fiorini GS, Chiu DT (2005) Disposable microfluidic devices: fabrication, function and application. Bio Tech 38:429–446CrossRefGoogle Scholar
  6. Mair DA, Geiger E, Pisano AP, Frechet JM, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6:1346–1354CrossRefGoogle Scholar
  7. McCormick RM, Nelson RJ, Alonso-Amigo MG, Benvegnu DJ, Hooper HH (1997) Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal Chem 69:2626–2630CrossRefGoogle Scholar
  8. Pfleging W, Baldus O (2006) Laser-assisted welding of transparent polymers for microchemical engineering and life science. SPIE 6107:61075-1–61075-12Google Scholar
  9. Pfleging W, Hanemann T, Torge M, Bernauer W (2003) Rapid fabrication and replication of metal, ceramic and plastic mould inserts for application in microsystem technologies: proceedings of the institution of mechanical engineers, Part C. J Mech Eng Sci 217((1):53–63Google Scholar
  10. Pfleging W, Przybylski M, Brückner HJ (2006) Excimer laser material processing. State of the art and new approaches in microsystem technology. Proc SPIE 6107:61070G/1-15Google Scholar
  11. Pfleging W, Kohler R, Schierjott P, Hoffmann W (2009) Laser patterning and packaging of CCD-CE-Chips made of PMMA. Sens Actuat B Chem 138(1):336–343CrossRefGoogle Scholar
  12. Pu Q, Oyesanya O, Thompson B, Liu S, Alvarez JC (2007) On-chip micropatterning of plastic (cylic olefin copolymer, COC) microfluidic channels for the fabrication of biomolecule microarrays using photografting methods. Langmuir 23:1577–1583MATHCrossRefGoogle Scholar
  13. Steigert J, Haeberle S, Brenner T, Müller C, Steinert CP, Koltay P, Gottschlich N, Reinecke H, Rühe J, Zengerle R, Ducrée J (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17:333–341CrossRefGoogle Scholar
  14. Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6:1–16CrossRefGoogle Scholar
  15. Ussing T, Petersen LV, Nielsen CB, Helbo B, Højslet L (2007) Micro laser welding of polymer microstructures using low power laser diodes. Int J Adv Manuf Technol 33:198–205CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Akanksha Singh
    • 1
  • Wilhelm Pfleging
    • 2
    • 3
  • Markus Beiser
    • 2
  • Chantal Khan Malek
    • 1
  1. 1.Department of Micro Nano Sciences and Systems Institute FEMTO-ST, UMR CNRS 6174, MN2SBesançon CedexFrance
  2. 2.Karlsruhe Institute of Technology, IMF IKarlsruheGermany
  3. 3.Karlsruhe Nano Micro FacilityEggenstein-LeopoldshafenGermany

Personalised recommendations