Advertisement

Microsystem Technologies

, Volume 18, Issue 11, pp 1917–1922 | Cite as

Measurement of electrical properties of materials under the oxide layer by microwave-AFM probe

  • Lan Zhang
  • Yang Ju
  • Atsushi Hosoi
  • Akifumi Fujimoto
Technical Paper

Abstract

The capability of a new AFM-based apparatus named microwave atomic force microscope (M-AFM) which can measure the topography and electrical information of samples simultaneously was investigated. Some special samples with different thicknesses of dielectric film (SiO2) which plays the role of oxide layer creating on the material surface were fabricated. The measurement of electrical properties of materials under the oxide layer by the M-AFM was studied. The results indicate that the M-AFM can lead the microwave signal penetrate the oxide film (SiO2) with a limited thickness of 60 nm and obtain the electrical information of underlying materials.

Keywords

Oxide Layer Measured Voltage Standoff Distance Dielectric Film Microwave Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science under Grants-in-Aid for Scientific Research (A) 23246024.

References

  1. Duewer F, Gao C, Takeuchi I, Xiang XD (1999) Tip-sample distance feedback control in a scanning evanescent microwave microscope. Appl Phys Lett 74(18):2696–2698. doi: 10.1063/1.123940 CrossRefGoogle Scholar
  2. Ju Y, Saka M, Abe H (2001) NDI of delamination in IC packages using millimeter-waves. IEEE Trans Instrum Meas 50(4):1019–1023. doi: 10.1109/19.948319 CrossRefGoogle Scholar
  3. Ju Y, Sato H, Soyama H (2005) Fabrication of the tip of GaAs microwave probe by wet etching. In: Proceedings of the advances in electronic packaging part A, B, and C. Micro- and nanofabrication process (Paper No. interPACK 2005 (CD-ROM) 73140). ASME, San Francisco, 17–22 July 2005Google Scholar
  4. Ju Y, Kobayashi T, Soyama H (2007) Fabrication of a GaAs microwave probe used for atomic forcemicroscope. Proceedings of the MEMS processing and fabrication (paper no. interPACK 2007 (CD-ROM) 33613). ASME, Vancouver, 8–12 July 2007Google Scholar
  5. Ju Y, Kobayashi T, Soyama H (2008) Development of a nanostructural microwave probe based on GaAs. Microsyst Technol 14(7):1021–1025. doi: 10.1007/s00542-007-0484-0 CrossRefGoogle Scholar
  6. Kopanski JJ, Marchiando JF, Lowney JR (1996) Scanning capacitance microscopy measurements and modeling: progress towards dopant profiling of silicon. J Vac Sci Technol B 14(1):242–247. doi: 10.1116/1.588455 CrossRefGoogle Scholar
  7. Liu L, Ju Y (2010) Nondestructive measurement and high-precision evaluation of the electrical conductivity of doped GaAs wafers using microwaves. Rev Sci Instrum 81(12):124701. doi: 10.1063/1.3518038 CrossRefGoogle Scholar
  8. Martin Y, Wickramasinghe HK (1987) Magnetic imaging by force microscopy with 1000—a resolution. Appl Phys Lett 50(20):1455–1457. doi: 10.1063/1.97800 CrossRefGoogle Scholar
  9. Martin Y, Abraham DW, Wickramasinghe HK (1988) High-resolution capacitance measurement and potentiometry by force microscopy. Appl Phys Lett 52(13):1103–1105. doi: 10.1063/1.99224 CrossRefGoogle Scholar
  10. Nonnenmacher M, Oboyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58(25):2921–2923. doi: 10.1063/1.105227 CrossRefGoogle Scholar
  11. Petzold M, Landgraf J, Futing M, Olaf JM (1995) Application of atomic-force microscopy for micro indentation testing. Thin Solid Films 264(2):153–158. doi: 10.1016/0040-6090(95)05855-9 CrossRefGoogle Scholar
  12. Qiang LL, Ma Z, Zheng Z, Yin R, Huang W (2006) Novel photo-crosslinkable light-emitting rod/coil copolymers: underlying facile material for fabricating pixelated displays. Macromol Rapid Commun 27(20):1779–1786. doi: 10.1002/marc.200600471 CrossRefGoogle Scholar
  13. Tabib-Azar M, Akinwande D (2000) Real-time imaging of semiconductor space-charge regions using high-spatial resolution evanescent microwave microscope. Rev Sci Instrum 71(3):1460–1465. doi: 10.1063/1.1150480 CrossRefGoogle Scholar
  14. Yamanaka K, Nakano S (1996) Ultrasonic atomic force microscope with overtone excitation of cantilever. Jpn J Appl Phys 35(6B):3787–3792. doi: 10.1143/JJAP.35.3787 CrossRefGoogle Scholar
  15. Zhang L, Ju Y, Hosoi A, Fujimoto A (2010) Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization. Rev Sci Instrum 81(12):123708. doi: 10.1063/1.3525058 CrossRefGoogle Scholar
  16. Zhang L, Ju Y, Hosoi A, Fujimoto A (2012) Microwave atomic force microscopy: quantitative measurement and characterization of electrical properties on the nanometer scale. Appl Phys Express 5(1):016602. doi: 10.1143/APEX.5.016602 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lan Zhang
    • 1
  • Yang Ju
    • 1
  • Atsushi Hosoi
    • 1
  • Akifumi Fujimoto
    • 1
  1. 1.Department of Mechanical Science and EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations