Advertisement

Microsystem Technologies

, Volume 18, Issue 11, pp 1807–1814 | Cite as

Study of black silicon obtained by cryogenic plasma etching: approach to achieve the hot spot of a thermoelectric energy harvester

  • K. N. NguyenEmail author
  • D. Abi-Saab
  • P. Basset
  • E. Richalot
  • M. Malak
  • N. Pavy
  • F. Flourens
  • F. Marty
  • D. Angelescu
  • Y. Leprince-Wang
  • T. Bourouina
Technical Paper

Abstract

In this paper, we study the enhanced absorption properties of micro/nano structured silicon surface under incident electromagnetic illumination and its capacity to convert light into heat. We simulate the optical reflectance of three-dimensional micro/nano silicon cones of different dimensions and under different electric field incident angles (θ i ). According to the favorable simulation results, we fabricate black silicon with conical microstructures that exhibits excellent anti-reflectivity behavior. Plasma etching under cryogenic temperatures is used for this purpose in an inductively coupled plasma-reactive ion etching reactor. The reflectance of the black silicon is measured to be approximately 1 % in the optical wavelength range, by using an integrating sphere coupled to a calibrated spectrometer. Furthermore, a device integrating a resistance temperature detector in a black silicon area is developed in order to investigate its efficiency as a photo-thermal converter.

Keywords

Incident Field Black Silicon Resistance Temperature Detector Halogen Light Source Cone Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank to EADS Foundation by whom this work is funded through the project TESEER.

References

  1. Bogaerts WF, Lampert CM (1983) Materials for photothermal solar energy conversion. J Mater Sci 18(10):2847–2875. doi: 10.1007/BF00700767 CrossRefGoogle Scholar
  2. Böhm M, Scheer HC, Wagemann HG (1984) A two-dimensional model for polycrystalline silicon solar cells. Sol Cells 13(1):29–41. doi: 10.1016/0379-6787(84)90090-5 CrossRefGoogle Scholar
  3. Booth DC, Allred DD, Seraphin BO (1979) Stabilized CVD amorphous silicon for high temperature photothermal solar energy conversion. Sol Energy Mater 2(1):107–124. doi: 10.1016/0165-1633(79)90034-0 CrossRefGoogle Scholar
  4. Branz HM, Yost VE, Ward S, Jones KM, To B, Stradinset P (2009) Nanostructured black silicon and the optical reflectance of graded-density surfaces Appl Phys Lett 94(23), art. no. 231121. doi:  10.1063/1.3152244
  5. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800. doi: 10.1364/OE.16.021793 CrossRefGoogle Scholar
  6. Damiani BM, Lüdemann R, Ruby DS, Zaidi SH, Rohatgi A (2000) Development of RIE-textured silicon solar cells. In: Photovoltaic specialists conference. Conference record of the twenty-eighth IEEE, pp 371–374. doi:  10.1109/PVSC.2000.915843
  7. De Boer MJ, Gardeniers JGE, Jansen HV, Smulders E, Gilde MJ, Roelofs G, Sasserath JN, Elwenspoek M (2002) Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures. J Microelectromech Syst 11(4):385–401. doi: 10.1109/JMEMS.2002.800928 CrossRefGoogle Scholar
  8. Dussart R, Mellhaoui X, Tillocher T, Lefaucheux P, Volatier M, Socquet-Clerc C, Brault P, Ranson P (2005) Silicon columnar microstructures induced by an SF6/O2 plasma. J Phys D Appl Phys 38(18):3395–3402. doi: 10.1088/0022-3727/38/18/012 CrossRefGoogle Scholar
  9. Garnich F, Sailer E (1990) Cu-SiO2/Cu-cermet selective absorbers for solar photothermal conversion. Sol Energy Mater 20(1–2):81–89. doi: 10.1016/0165-1633(90)90019-W CrossRefGoogle Scholar
  10. Halbwax M, Sarnet T, Delaporte Ph, Sentis M, Etienne H, Torregrosa F, Vervisch V, Perichaud I, Martinuzzi S (2008) Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication. Thin Solid Films 516(20):6791–6795. doi: 10.1016/j.tsf.2007.12.117 CrossRefGoogle Scholar
  11. Henry MD, Welch C, Scherer A (2009) Techniques of cryogenic reactive ion etching in silicon for fabrication of sensors. J Vac Sci Technol A 27(5):1211–1216. doi: 10.1116/1.3196790 CrossRefGoogle Scholar
  12. Jansen H, De Boer M, Wensink H, Kloeck B, Elwenspoek M (2001) The black silicon method VIII. A study of the performance of etching silicon using SF6/O2-based chemistry with cryogenical wafer cooling and a high density ICP source. Microelectron J 32(9):769–777. doi: 10.1016/S0026-2692(01)00039-8 CrossRefGoogle Scholar
  13. Lee TY, Alegaonkar PS, Yoo JB (2007) Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515(12):5131–5135. doi: 10.1016/j.tsf.2006.10.056 CrossRefGoogle Scholar
  14. Manea E, Budianu E, Purica M, Cernica I, Babarada F (2006) Technological process for a new silicon solar cell structure with honeycomb textured front surface. Sol Energy Mater Sol Cells 90(15):2312–2318. doi: 10.1016/j.solmat.2006.03.036 CrossRefGoogle Scholar
  15. Marty F, Rousseau L, Saadany B, Mercier B, Francais O, Mita Y, Bourouina T (2005) Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectron J 36(7):673–677. doi: 10.1016/j.mejo.2005.04.039 CrossRefGoogle Scholar
  16. Nguyen KN, Abi-Saab D, Basset P, Richalot E, Marty F, Angelescu D, Leprince-Wang Y, Bourouina T (2011) Black silicon with sub-percent reflectivity: influenced of the 3D texturization geometry. In: Transducers 2011, 16th international conference on solid-state sensors, actuators and microsystemsGoogle Scholar
  17. Nijs JF, Szlufcik J, Poortmans J, Sivoththaman S, Mertens RP (2001) Advanced cost-effective crystalline silicon solar cell technologies. Sol Energy Mater Sol Cells 65(1):249–259. doi: 10.1016/S0927-0248(00)00100-8 CrossRefGoogle Scholar
  18. Parasuraman J, Bardoux M, Basset P, Angelescu D, Chantrenne P and Bourouina T (2010) Development of vertical superlattices in silicon for on-chip thermal management. In: Proceedings of the 16th International workshop on thermal investigations of ICs and systems (THERMINIC’10), art. no. 5636317, pp 282–284Google Scholar
  19. Petit R (1980) Electromagnetic theory of gratings. Springer-Verlag, Berlin. ISBN-10:0387101934Google Scholar
  20. Richalot E, Bonilla M, Wong MF, Fouad-Hanna V, Baudrand H, Wiart J (2000) Electromagnetic propagation into reinforced-concrete walls. IEEE Trans Microwave Theory Tech 48(3):357–366. doi: 10.1109/22.826834 CrossRefGoogle Scholar
  21. Ruby DS, Zaidi SH, Narayanan S, Damiani BM, Rohatgi A (2002) RIE-texturing of multicrystalline silicon solar cells. Sol Energy Mater Sol Cells 74(1–4):133–137. doi: 10.1016/S0927-0248(02)00057-0 Google Scholar
  22. Sai H, Yugami H, Kanamori Y, Hane K (2003) Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Sol Energy Mater Sol Cells 79(1):35–49. doi: 10.1016/S0927-0248(02)00364-1 CrossRefGoogle Scholar
  23. Sainiemi L, Jokinen V, Shah A, Shpak M, Aura S, Suvanto P, Franssila S (2011) Non-reflecting silicon and polymer surfaces by plasma etching and replication. Adv Mater 23(1):122–126. doi: 10.1002/adma.201001810 CrossRefGoogle Scholar
  24. Shen MY, Crouch CH, Carey JE, Mazur E (2004) Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl Phys Lett 85(23):5694–5696. doi: 10.1063/1.1828575 CrossRefGoogle Scholar
  25. Vetterl O, Finger F, Carius R, Hapke P, Houben L, Kluth O, Lambertz A, Mück A, Rech B, Wagner H (2000) Intrinsic microcrystalline silicon: a new material for photovoltaics. Sol Energy Mater Sol Cells 62(1):97–108. doi: 10.1016/S0927-0248(99)00140-3 CrossRefGoogle Scholar
  26. Yoo J, Yu G, Yi J (2009) Black surface structures for crystalline silicon solar cells. Mater Sci Eng B Solid State Mater Adv Technol 159–160(C):333–337. doi:  10.1016/j.mseb.2008.10.019

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • K. N. Nguyen
    • 1
    Email author
  • D. Abi-Saab
    • 1
  • P. Basset
    • 1
  • E. Richalot
    • 2
  • M. Malak
    • 1
  • N. Pavy
    • 1
  • F. Flourens
    • 1
  • F. Marty
    • 1
  • D. Angelescu
    • 1
  • Y. Leprince-Wang
    • 3
  • T. Bourouina
    • 1
  1. 1.ESYCOM, ESIEE ParisUniversité Paris-EstNoisy-le-GrandFrance
  2. 2.ESYCOMUniversité Paris-EstMarne-la-Vallée Cedex 2France
  3. 3.LPMDIUniversité Paris-EstMarne-la-Vallée Cedex 2France

Personalised recommendations