Microsystem Technologies

, Volume 18, Issue 4, pp 523–530 | Cite as

Insight into the micro scale dynamics of a micro fluidic wetting-based conveying system by particle based simulation

  • Jan Lienemann
  • Dennis Weiß
  • Andreas Greiner
  • David Kauzlaric
  • Oliver Grünert
  • Jan G. Korvink
Technical Paper


We simulate a microfluidic conveying system using the many-body dissipative particle dynamics method (MDPD). The conveying system can transport micro parts to a specified spot on a surface by letting them float inside or on top of a droplet, which is pumped by changing the wetting behaviour of the substrate, e.g., with electrowetting on dielectrics. Subsequent evaporation removes the fluid; the micro part remains on its final position, where a second substrate can pick it up. In this way, the wetting control can be separate from the final device substrate. The MDPD method represents a fluid by particles, which are interpreted as a coarse graining of the fluid’s molecules. The choice of interaction forces allows for free surfaces. To introduce a contact angle model, non-moving particles beyond the substrate interact with the fluid particles by MDPD forces such that the required contact angle emerges. The micro part is simulated by particles with spring-type interaction forces.


  1. Allen MP, Tildesley DJ (1987) Computer simulation of liquid. Clarendon, OxfordGoogle Scholar
  2. Berge B (1993) Electrocapillarity and wetting of insulator films by water. C R Acad Sci Ser II Mech Phys Chim Sci Terre Univ 317:157–163Google Scholar
  3. Buff FP (1956) Curved fluid interfaces. I. the generalized Gibbs–Kelvin equation. J Chem Phys 25(1):146–153MathSciNetCrossRefGoogle Scholar
  4. Bykhovskii AI (1974) Effects of external influences on the spreading of a liquid phase on a crystal surface—a review. Poroshkovaya Metallurgiya 133(1):50–62 (Translated from Poroshkovaya Metallurgiya)Google Scholar
  5. Chiou PY, Moon H, Toshiyoshi H, Kim C-J, Wu MC (2003) Light actuation of liquid by optoelectrowetting. Sens Actuators A Phys A104(3):222–228CrossRefGoogle Scholar
  6. Cho SK, Moon H, Fowler J, Kim C-J (2001) Splitting a liquid droplet for electrowetting-based microfluidics. In: Proceedings of the ASME IMECE, Number IMECE2001/MEMS-23831, NYGoogle Scholar
  7. Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80CrossRefGoogle Scholar
  8. Decamps C, Coninck JD (2000) Dynamics of spontaneous spreading under electrowetting conditions. Langmuir 16(26):10150–10153CrossRefGoogle Scholar
  9. Dimitrakopoulos P, Higdon JJL (1997) Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows. J Fluid Mech 336:351–378MATHCrossRefGoogle Scholar
  10. Español P (1995) Hydrodynamics from dissipative particle dynamics. Phys Rev E 52(2):1734–1742MathSciNetCrossRefGoogle Scholar
  11. Feenstra BJ, Hayes RA, van Dijk R, Boom RGH, Wagemans MMH, Camps IGJ, Giraldo A, Heijden Bvd (2006) Electrowetting-based displays: bringing microfluidics alive on-screen. In: Proceedings of the IEEE MEMS Istanbul, Turkey, pp 48–53Google Scholar
  12. Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81(2):725–736CrossRefGoogle Scholar
  13. Gurrum SP, Murthy S, Joshi YK (2002) Numerical simulation of thermocapillary pumping using level set method. In: Proceedings of the 5th ISHMT/ASME HMTC, Kolkota, IndiaGoogle Scholar
  14. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225MATHCrossRefGoogle Scholar
  15. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160CrossRefGoogle Scholar
  16. Ivošević N, Žutić V (1998) Spreading and detachment of organic droplets at an electrified interface. Langmuir 14(7):231–234Google Scholar
  17. Janocha B, Bauser H, Oehr C, Brunner H, Göpel W (2000) Competitive electrowetting of polymer surfaces by water and decane. Langmuir 16(7):3349–3354CrossRefGoogle Scholar
  18. Karlsson R, Karlsson M, Karlsson A, Cans A-S, Bergenholtz J, Åkerman B, Ewing AG, Voinova M, Orwar O (2002) Moving-wall-driven flows in nanofluidic systems. Langmuir 18(11):4186–4190CrossRefGoogle Scholar
  19. Kauzlaric D, Greiner A, Korvink J, Schulz M, Heldele R (2005) M of advanced micro and nanosystems, chapter modeling micro PIM, Wiley-VCH, Weinheim, pp 51–84. http://dx.doi.org/10.1002/9783527616725
  20. Kim C-J (2001) Micropumping by electrowetting. In: Proceedings of the ASME IMECE, Number IMECE2001/HTD-24200, NYGoogle Scholar
  21. Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: Proceedings of the IFAC Symposium on computer aided design of control systems, Zürich, pp 113–117Google Scholar
  22. Lazarou P, Aspragathos N, Jung E (2006) Micropart manipulation by electrical fields for highly parallel batch assembly. In: Proceedings of the 4M Conference 2006, Grenoble, FranceGoogle Scholar
  23. Lee J, Kim C-J (1999) Theory and modeling of continuous electrowetting microactuation. In: Proceedings of the MEMS (MEMS-vol 1), ASME IMECE, vol 1, Nashville, TN, pp 397–403Google Scholar
  24. Lee J, Kim C-J (2000) Surface tension driven microactuation based on continuous electrowetting (CEW). J Microelectromech Syst 9(2):171–180MATHCrossRefGoogle Scholar
  25. Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensor Actuat A Phys 95(2–3):259–268CrossRefGoogle Scholar
  26. Lienemann J, Greiner A, Korvink JG (2006) Modeling, simulation and optimization of electrowetting. IEEE T Comput Aid D (Special Issue on Design Automation Methods and Tools for Microfluidics-Based Biochips) 25(2):234–247Google Scholar
  27. Lienemann J, Greiner A, Korvink JG, Xiong X, Hanein Y, Böhringer KF (2004) Modelling, simulation and experimentation of a promising new packaging technology—parallel fluidic self-assembly of micro devices. Sens Update 13:3–43CrossRefGoogle Scholar
  28. Monaghan JJ (1988) An introduction to sph. Comput Phys Commun 48(1):89–96MATHCrossRefGoogle Scholar
  29. Moon I, Kim J (2006) Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system. Sens Actuators A Phys 130–131:537–544CrossRefGoogle Scholar
  30. Moriarty JA, Schwartz LW, Tuck EO (1991) Unsteady spreading of thin liquid films with small surface tension. Phys Fluids A Fluid 3(5):733–742MATHCrossRefGoogle Scholar
  31. Nakamura Y, Kamada K, Katoh Y, Watanabe A (1973) Studies on secondary electrocapillary effects: I. The confirmation of the Young–Dupré equation. J Colloid Interf Sci 44(3):517–524CrossRefGoogle Scholar
  32. Nakamura Y, Matsumoto M, Nishizawa K, Kamada K, Watanabe A (1977) Studies on secondary electrocapillary effects: II. The electrocapillary phenomena in thin liquid film. J Colloid Interf Sci 59(2):201–210CrossRefGoogle Scholar
  33. Noguchi H, Gompper G (2007) Transport coefficients of dissipative particle dynamics with finite time step. Europhys Lett 79(3):36002. doi:10.1209/0295-5075/79/36002 Google Scholar
  34. Pagonabarraga I, Frenkel D (2001) Dissipative particle dynamics for interacting systems. J Chem Phys 115(11):5015–5026CrossRefGoogle Scholar
  35. Peters EAJF (2004) Elimination of time step effects in DPD. Europhys Lett 66(3):311–317CrossRefGoogle Scholar
  36. Rübenkönig O (2008) Free surface flow and the IMTEK mathematica supplement. PhD thesis, University of Freiburg, GermanyGoogle Scholar
  37. Sammarco TS, Burns MA (1999) Thermocapillary pumping of discrete drops in microfabricated analysis devices. AIChE J 45(2):350–366CrossRefGoogle Scholar
  38. Sammarco TS, Burns MA (2000) Heat-transfer analysis of microfabricated thermocapillary pumping and reaction devices. J Micromech Microeng 10(1):42–55CrossRefGoogle Scholar
  39. Schneemilch M, Welters WJJ, Hayes RA, Ralston J (2000) Electrically induced changes in dynamic wettability. Langmuir 16(6):2924–2927CrossRefGoogle Scholar
  40. Trofimov SY, Nies ELF, Michels MAJ (2002) Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. J Chem Phys 117(20):9383–9394CrossRefGoogle Scholar
  41. Trozzi C, Ciccotti G (1984) Stationary nonequilibrium states by molecular dynamics. II. Newton’s law. Phys Rev A 29(2):916–925CrossRefGoogle Scholar
  42. Vallet M, Vallade M, Berge B (1999) Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur Phys J B 11(4):583–591CrossRefGoogle Scholar
  43. Verheijen HJJ, Prins MWJ (1999) Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15(20):6616–6620CrossRefGoogle Scholar
  44. Warren PB (2003) Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys Rev E 68(6):066702CrossRefGoogle Scholar
  45. Zeng J (2004) Electrohydrodynamic modeling and simulation and its application to digital microfluidics. In: Lab-on-a-Chip. Proceedings of the SPIE, vol 5591, pp 125–142Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jan Lienemann
    • 1
    • 3
  • Dennis Weiß
    • 1
  • Andreas Greiner
    • 1
  • David Kauzlaric
    • 2
  • Oliver Grünert
    • 1
  • Jan G. Korvink
    • 1
    • 2
  1. 1.Department of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
  2. 2.Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburgGermany
  3. 3.Schmidt and Partner Engineering AG (SPEAG)ZürichSwitzerland

Personalised recommendations