Advertisement

Microsystem Technologies

, Volume 18, Issue 3, pp 373–379 | Cite as

Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

  • Huawei LiEmail author
  • Yiqiang Fan
  • Rimantas Kodzius
  • Ian G. Foulds
Technical Paper

Abstract

In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

Keywords

Laser Power PDMS Microfluidic Device Laser Ablation Process Polystyrene Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26CrossRefGoogle Scholar
  2. Chen SC, Cahill DG, Grigoropoulos CP (2000) Melting and surface deformation in pulsed laser surface micromodification of Ni-P Disks. J Heat Transfer 122:107–112CrossRefGoogle Scholar
  3. Chen CS, Breslauer DN, Luna J, Grimes A, Chin W, Lee L, Khine M (2008) Shrinky-Dink microfluidics: 3D polystyrene chips. Lab Chip 8:622–624CrossRefGoogle Scholar
  4. Darain F, Gan KL, Tjin SC (2009) Antibody immobilization on to polystyrene substrate—on-chip immunoassay for horse IgG based on fluorescence. Biomed Microdevices 11:653–661CrossRefGoogle Scholar
  5. Dolnik V, Liu SR, Jovanovich S (2000) Capillary electrophoresis on microchip. Electrophoresis 21:41–54CrossRefGoogle Scholar
  6. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRefGoogle Scholar
  7. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281CrossRefGoogle Scholar
  8. Gerlach A, Knebel G, Guber AE, Heckele M, Herrmann D, Muslia A, Sshaller T (2002) Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis. Microsyst Technol 7:265–268CrossRefGoogle Scholar
  9. Hoek I, Tho F, Arnold WM (2010) Sodium hydroxide treatment of PDMS based microfluidic devices. Lab Chip 10:2283–2285CrossRefGoogle Scholar
  10. Huang SM, Sun Z, Luk’yanchuk BS, Hong MH, Shi LP (2005) Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon. Appl Phys Lett 86:161911CrossRefGoogle Scholar
  11. Huang YG, Liu SB, Yang W, Yu CX (2010) Surface roughness analysis and improvement of PMMA-based microfluidic chip chambers by CO2 laser cutting. Appl Surf Sci 256:1675–1678CrossRefGoogle Scholar
  12. Huft J, Da Costa DJ, Walker D, Hansen CL (2010) Three-dimensional large-scale microfluidic integration by laser ablation of interlayer connections. Lab Chip 10:2358–2365CrossRefGoogle Scholar
  13. Jakeway SC, Mello AJ, Russell EL (2000) Miniaturized total analysis systems for biological analysis. Fresenius J Anal Chem 366:525–539CrossRefGoogle Scholar
  14. Jankowski P, Ogonczyk D, Kosinski A, Lisowski W, Garstecki P (2011) Hydrophobic modification of polycarbonate for reproducible and stable formation of biocompatible microparticles. Lab Chip 11:748–752CrossRefGoogle Scholar
  15. Kaur J, Boro RC, Wangoo N, Singh KR, Suri CR (2008) Direct hapten coated immunoassay format for the detection of atrazine and 2, 4-dichlorophenoxyacetic acid herbicides. Anal Chim Acta 607:92–99CrossRefGoogle Scholar
  16. Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2:242–246CrossRefGoogle Scholar
  17. Kodzius R, Xiao K, Wu J, Yi X, Gong X, Foulds I, Wen W (2011) Inhibitory effect of common microfluidic materials on PCR outcome. Sens Actuators B Chem. doi: 10.1016/j.snb.2011.10.044
  18. Li HW, Fan YQ, Foulds I (2012) Rapid and low cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser. Adv Mater Res 403–408:4344–4348Google Scholar
  19. Lim CT, Low HY, Ng JKK, Liu WT, Zhang Y (2009) Fabrication of three-dimensional hemispherical structures using photolithography. Microfluid Nanofluid 7:721–726CrossRefGoogle Scholar
  20. Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 118:2618–2622CrossRefGoogle Scholar
  21. Liu HB, Gong HQ (2009) Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser. J Micromech Microeng 19:037002CrossRefGoogle Scholar
  22. Martynova L, Locascio LE, Gaitan M, Kramer GW, Christensen RG, MacCrehan WA (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69:4783–4789CrossRefGoogle Scholar
  23. Nayak NC, Lam Y, Yue C, Sinha TA (2008) CO2-laser micromachining of PMMA: the effect of polymer molecular weight. J Micromech Microeng 18:095020CrossRefGoogle Scholar
  24. Ogonczyk D, Wegrzyn J, Jankowski P, Dabrowski B, Garstecki P (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327CrossRefGoogle Scholar
  25. Pla-Roca M, Juncker D (2011) PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays. Methods in mol biol (Clifton, NJ) 671:177–194CrossRefGoogle Scholar
  26. Qi H, Chen T, Yao LY, Zuo TC (2009) Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt Laser Eng 47:594–598CrossRefGoogle Scholar
  27. Reedy CR, Price CW, Sniegowski J, Ferrance JP, Begley M, Landers JP (2011) Solid phase extraction of DNA from biological samples in a post-based, high surface area poly(methyl methacrylate) (PMMA) microdevice. Lab Chip 11:1603–1611CrossRefGoogle Scholar
  28. Rotting O, Ropke W, Becker H, Gartner C (2002) Polymer microfabrication technologies. Microsyst Technol 8:32–36CrossRefGoogle Scholar
  29. Snakenborg D, Klank H, Kutter JP (2004) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14:182–189CrossRefGoogle Scholar
  30. Tolstopyatov EM (2005) Ablation of polytetrafluoroet-hylene using a continuous CO2 laser beam. J Phys D Appl Phys 38:1993–1999CrossRefGoogle Scholar
  31. Urech L, Lippert T (2010) Photoablation of polymer materials. Photochemistry and Photophysics of Polymer Materials. Wiley, New York, pp 541–568Google Scholar
  32. Wu SH (1970) Surface and Interfacial Tensions of Polymer Melts II. Poly(methyl methacrylate), Poly(n-butyl methacrylate) and Polystyrene. J Phys Chem 74:632–638CrossRefGoogle Scholar
  33. Yao X, Chen Z, Chen G (2009) Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates. Electrophoresis 30:4225–4229MathSciNetCrossRefGoogle Scholar
  34. Yi X, Kodzius R, Gong X, Xiao K, Wen W (2010) A simple method of fabricating mask-free microfluidic devices for biological analysis. Biomicrofluidics 4(3). doi: 10.1063/1.3487796
  35. Young EWK, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, Huttenlocher A, Beebe DJ (2011) Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal Chem 83:1408–1417CrossRefGoogle Scholar
  36. Yuan DJ, Das S (2007) Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. J Appl Phys 101:024901CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Huawei Li
    • 1
    Email author
  • Yiqiang Fan
    • 1
  • Rimantas Kodzius
    • 1
  • Ian G. Foulds
    • 1
  1. 1.Department of Electrical EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations