Microsystem Technologies

, Volume 16, Issue 12, pp 1995–2015

Lab-on-a-chip: a component view

Review Paper
  • 1.7k Downloads

Abstract

Miniaturization is being increasingly applied to biological and chemical analysis processes. Lab-on-a-chip systems are direct creation of the advancement in the miniaturization of these processes. They offer a host of exciting applications in several areas including clinical diagnostics, food and environmental analysis, and drug discovery and delivery studies. This paper reviews lab-on-a-chip systems from their components perspective. It provides a categorization of the standard functional components found in lab-on-a-chip devices together with an overview of the latest trends and developments related to lab-on-a-chip technologies and their application in nanobiotechnology. The functional components include: injector, transporter, preparator, mixer, reactor, separator, detector, controller, and power supply. The components are represented by appropriate symbols allowing designers to present their lab-on-a-chip products in a standard manner. Definition and role of each functional component are included and complemented with examples of existing work. Through the approach presented in this paper, it is hoped that modularity and technology transfer in lab-on-a-chip systems can be further facilitated and their application in nanobiotechnology be expanded

References

  1. Ahn CH et al (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92(1):154–173CrossRefGoogle Scholar
  2. Andersson H, van der Wijngaart W, Nilsson P, Enoksson P, Stemme G (2001) A valve-less diffuser micropump for microfluidic analytical systems. Sens Actuators B 72(3):259–265CrossRefGoogle Scholar
  3. Applegate RW Jr et al (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426Google Scholar
  4. Auroux PA, Iossifidis D, Reyes D, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74(12):2637–2652Google Scholar
  5. Bally M, Halter M, Vörös J, Grandin HM (2006) Optical microarray biosensing techniques. Surf Interface Anal 38(11):1442–1458CrossRefGoogle Scholar
  6. Banerjee A, Pais A, Papautsky I, Klotzkin D (2008) A polarization isolation method for high-sensitivity, low-cost on-chip fluorescence detection for microfluidic lab-on-a-chip. IEEE Sens J 8(5):621–627CrossRefGoogle Scholar
  7. Bhattacharyya A, Klapperich CM (2006) Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem 78:788–792CrossRefGoogle Scholar
  8. Blas M, Delaunay N, Rocca J-L (2008) Electrokinetic-based injection modes for separative microsystems. Electrophoresis 29(1):20–32CrossRefGoogle Scholar
  9. Bottausci F, Cardonne C, Meinhart C, Mezic I (2007) An ultrashort mixing length micromixer: the shear superposition micromixer. Lab Chip 7(3):396–398CrossRefGoogle Scholar
  10. Brown RB, Audet J (2008) Current techniques for single-cell lysis. J R Soc Interface 5(Suppl 2):131–138Google Scholar
  11. Cady NC, Stelick S, Batt CA (2003) Nucleic acid purification using microfabricated silicon structures. Biosens Bioelectron 19(1):59–66CrossRefGoogle Scholar
  12. Cady NC, Stelick S, Kunnavakkam MV, Batt CA (2005) Real-time pcr detection of listeria monocytogenes using an integrated microfluidics platform. Sens Actuators B 107(1):332–341CrossRefGoogle Scholar
  13. Cai Z, Chen H, Chen B, Huang C (2006) A gravity driven micro flow injection wetting film extraction system on a polycarbonate chip. Talanta 68(3):895–901CrossRefGoogle Scholar
  14. Cao H, Tegenfeldt JO, Austin RH, Chou SY (2002) Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl Phys Lett 81(16):3058CrossRefGoogle Scholar
  15. Carlen ET, van den Berg A (2007) Nanowire electrochemical sensors: can we live without labels? Lab Chip 7(1):19–23CrossRefGoogle Scholar
  16. Chandrasekaran A, Packirisamy M (2006) Absorption detection of enzymatic reaction using optical microfluidics based intermittent flow microreactor system. IEE Proc Nanobiotechnol 153(6):137–143CrossRefGoogle Scholar
  17. Chen H, Meiners J-C (2004) Topologic mixing on a microfluidic chip. Appl Phys Lett 84(12):2193–2195CrossRefGoogle Scholar
  18. Chen Y-F, Yang JM, Gau J-J, Ho C-M, Tai Y-C (2000) Microfluidic system for biological agent detection. In: The 3rd international conference on the interaction of art and fluid mechanics, ZurichGoogle Scholar
  19. Chen G, Lin Y, Wang J (2006) Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 68(3):497–503MathSciNetCrossRefGoogle Scholar
  20. Chen X, Cui D, Liu C, Li H, Chen J (2007) Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal Chim Acta 584(2):237–243CrossRefGoogle Scholar
  21. Cho BS et al (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75(7):1671–1675CrossRefGoogle Scholar
  22. Choi S, Park J-K (2005) Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip 5(10):1161–1167CrossRefGoogle Scholar
  23. Choi S, Song S, Choi C, Park J-K (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7(11):1532–1538CrossRefGoogle Scholar
  24. Chooi J-W et al (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2:27–30CrossRefGoogle Scholar
  25. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442(7101):387–393CrossRefGoogle Scholar
  26. Crevillen AG, Pumera M, Gonzalez MC, Escarpa A (2009) Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab Chip 9(2):346–353CrossRefGoogle Scholar
  27. Crevillén AG, Hervás M, López MA, González MC, Escarpa A (2007) Real sample analysis on microfluidic devices. Talanta 74:342–357CrossRefGoogle Scholar
  28. Cross JD, Strychalski EA, Craighead HG (2007) Size-dependent DNA mobility in nanochannels. J Appl Phys 102(2):024701CrossRefGoogle Scholar
  29. Cygan ZT, Cabral JT, Beers KL, Amis EJ (2005) Microfluidic platform for the generation of organic-phase microreactors. Langmuir 21(8):3629–3634CrossRefGoogle Scholar
  30. Daniel D, Gutz IGR (2006) Electronic micropipettor: a versatile fluid propulsion and injection device for micro-flow analysis. Anal Chim Acta 571(2):218–227CrossRefGoogle Scholar
  31. De Vos KM, Bartolozzi I, Bienstman P, Baets R, Schacht E (2007) Optical biosensor based on silicon-on-insulator microring cavities for specific protein binding detection. In: Nanoscale imaging, spectroscopy, sensing, and actuation for biomedical applications IV (SPIE), pp 64470K–64478KGoogle Scholar
  32. Doku GN, Verboom W, Reinhoudt DN, van den Berg A (2005) On-microchip multiphase chemistry—a review of microreactor design principles and reagent contacting modes. Tetrahedron 61(11):2733–2742CrossRefGoogle Scholar
  33. Dong H, Li CM, Zhou Q, Sun JB, Miao JM (2006) Sensitive electrochemical enzyme immunoassay microdevice based on architecture of dual ring electrodes with a sensing cavity chamber. Biosens Bioelectron 22(5):621–626CrossRefGoogle Scholar
  34. Easley CJ et al (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. PNAS 103(51):19272–19277CrossRefGoogle Scholar
  35. Eijkel JCT, van den Berg A (2006) Nanotechnology for membranes, filters and sieves: a series of mini-reviews covering new trends in fundamental and applied research, and potential applications of miniaturised technologies. Lab Chip 6(1):19–23CrossRefGoogle Scholar
  36. Emrich CA, Tian H, Medintz IL, Mathies RA (2002) Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem 74:5076–5083CrossRefGoogle Scholar
  37. Erickson D, Sinton D, Li D (2004) A miniaturized high-voltage integrated power supply for portable microfluidic applications. Lab Chip 4:87–90CrossRefGoogle Scholar
  38. Fan X, White IM, Zhu H, Suter JD, Oveys H (2007) Overview of novel integrated optical ring resonator bio/chemical sensors. Proc SPIE 6452M:6420–6451Google Scholar
  39. Fissell WH et al (2009) High-performance silicon nanopore hemofiltration membranes. J Memb Sci 326(1):58–63CrossRefGoogle Scholar
  40. Fletcher PDI, Haswell SJ, Paunov VN (1999) Theoretical considerations of chemical reactions in micro-reactors operating under electroosmotic and electrophoretic control. Analyst 124:1273–1282CrossRefGoogle Scholar
  41. Foote RS, Khandurina J, Jacobson SC, Ramsey JM (2005) Preconcentration of proteins on microfluidic devices using porous silica membranes. Anal Chem 77(1):57–63CrossRefGoogle Scholar
  42. Fu AY, Chou HP, Spence C, Arnold FH, Quake SR (2002) An integrated microfabricated cell sorter. Anal Chem 74(11):2451–2457CrossRefGoogle Scholar
  43. Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J (2007) A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat Nano 2(2):121–128CrossRefGoogle Scholar
  44. Futterer C et al (2004) Injection and flow control system for microchannels. Lab Chip 4(4):351–356CrossRefGoogle Scholar
  45. Gao J, Xu J, Locascio LE, Lee CS (2001) Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem 73(11):2648–2655CrossRefGoogle Scholar
  46. Gao J, Yin XF, Fang ZL (2004) Integration of single cell injection, cell lysis, separation and detection of intracelullar constituents on a microfluidic chip. Lab Chip 4:47–52CrossRefGoogle Scholar
  47. Garstecki P, Fuerstman MJ, Fischbach MA, Sia SK, Whitesides GM (2006) Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab Chip 6(2):207–212CrossRefGoogle Scholar
  48. Ghafar-Zadeh E, Sawan M (2007a) A hybrid microfluidic/cmos capacitive sensor dedicated to lab-on-chip applications. IEEE Trans Biomed Circuits Syst 1(4):270–277CrossRefGoogle Scholar
  49. Ghafar-Zadeh E, Sawan M (2007b) A 0.18 μm cmos capacitive detection lab-on-chip. IEEE Custom Integrated Circuits Conference (CICC), pp 165–172Google Scholar
  50. Ghafar-Zadeh E, Sawan M (2008) Charge-based capacitive sensor array for cmos-based laboratory-on-chip applications. IEEE Sens J 8(4):325–332CrossRefGoogle Scholar
  51. Ghafar-Zadeh E, Sawan M, Therriault D (2007) Novel direct-write cmos-based laboratory-on-chip: design, assembly and experimental results. Sens Actuators A 134(1):27–36CrossRefGoogle Scholar
  52. Ghosal S (2006) Electrokinetic flow and dispersion in capillary electrophoresis. Annu Rev Fluid Mech 38(1):309–338MathSciNetCrossRefGoogle Scholar
  53. Goerke O, Pfeifer P, Schubert K (2004) Water gas shift reaction and selective oxidation of co in microreactors. Appl Catal A Gen 263:11–18CrossRefGoogle Scholar
  54. Gong M, Wehmeyer KR, Stalcup AM, Limbach PA, Heineman WR (2007) Study of injection bias in a simple hydrodynamic injection in microchip CE. Electrophoresis 28(10):1564–1571CrossRefGoogle Scholar
  55. Grumann M, Geipel A, Riegger L, Zengerle R, Ducree J (2005) Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5(5):560–565CrossRefGoogle Scholar
  56. Guo WP, Ma XM, Zeng Y (2005) Clinical laboratories on a chip for human immunodeficiency virus assay. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp 1274–1277Google Scholar
  57. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110CrossRefGoogle Scholar
  58. Hart SJ, Terray AV, Arnold J (2007) Particle separation and collection using an optical chromatographic filter. Appl Phys Lett 91(17):171121–171123CrossRefGoogle Scholar
  59. Hatch A et al (2001) A rapid diffusion immunoassay in a t-sensor. Nat Biotechnol 19:461–465CrossRefGoogle Scholar
  60. Herr AE et al (2007) Microfluidic immunoassays as rapid saliva-based clinical diagnostics. PNAS 104(13):5268–5273CrossRefGoogle Scholar
  61. Hong CC, Choi JW, Ahn CH (2004) A novel in-plane passive microfluidic mixer with modified tesla structures. Lab Chip 4(2):109–113CrossRefGoogle Scholar
  62. Huang C et al (2009) Localized surface plasmon resonance biosensor integrated with microfluidic chip. Biomed Microdevices 11(4):893–901CrossRefGoogle Scholar
  63. Hui WC et al (2007) Microfluidic systems for extracting nucleic acids for DNA and RNA analysis. Sens Actuators A 133(2):335–339CrossRefGoogle Scholar
  64. Ikuta K, Satake N, Ohashi T, Shibata M (2008) Finger-top total protein analysis system based on new biochemical ic chip.In: Micro Electro Mechanical Systems, 2008 MEMS 2008. IEEE 21st International Conference on, pp 236–239Google Scholar
  65. Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85(21):5093–5095CrossRefGoogle Scholar
  66. Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161CrossRefGoogle Scholar
  67. Jain KK (2005) The role of nanobiotechnology in drug discovery. Drug Discov Today 10(21):1435–1442CrossRefGoogle Scholar
  68. Jiang Z, Llandro J, Mitrelias T, Bland JAC (2006) An integrated microfluidic cell for detection, manipulation, and sorting of single micron-sized magnetic beads. 50th annual conference on magnetism and magnetic materials, (AIP), pp 08S103–105Google Scholar
  69. Jin LJ, Ferrance J, Sanders JC, Landers JP (2003) A microchip-based proteolytic digestion system driven by electroosmotic pumping. Lab Chip 3(1):11–18CrossRefGoogle Scholar
  70. Jindal R, Cramer SM (2004) On-chip electrochromatography using sol-gel immobilized stationary phase with UV absorbance detection. J Chromatogr A 1044(1–2):277–285CrossRefGoogle Scholar
  71. Jung B, Fisher K, Ness KD, Rose KA, Raymond P, Mariella J (2008) Acoustic particle filter with adjustable effective pore size for automated sample preparation. Anal Chem 80:8447–8452CrossRefGoogle Scholar
  72. Kaigala GV et al (2008) An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. Analyst 133(3):331–338CrossRefGoogle Scholar
  73. Kataoka S, Endo A, Harada A, Ohmori T (2008) Fabrication of mesoporous silica thin films inside microreactors. Mater Lett 62(4–5):723–726CrossRefGoogle Scholar
  74. Kikutani Y et al (2002) Pile-up glass microreactor. Lab Chip 2:193–196CrossRefGoogle Scholar
  75. Klotzkin D, Papautsky I (2007) High-sensitivity integrated fluorescence analysis for microfluidic lab-on-a-chip. SPIE NewsGoogle Scholar
  76. Kornaros G, Meidanis D, Papaeystathiou Y, Chantzandroulis S, Blionas S (2008) Architecture of a consumer lab-on-chip for pharmacogenomics. Consumer Electronics, 2008 (ICCE 2008). Digest of Technical Papers. International conference on consumer electronics, pp 1–2Google Scholar
  77. Kua CH, Lam YC, Yang C, Youcef-Toumi K (2005) Review of bio-particle manipulation using dielectrophoresis. Singapore-MIT, pp 1–7Google Scholar
  78. Kuswandi B, Nuriman, Huskens J, Verboom W (2007) Optical sensing systems for microfluidic devices: a review. Anal Chim Acta 601(2):141–155Google Scholar
  79. Kutter JP, Jacobson SC, Ramsey JM (2000) Solid phase extraction on microfluidic devices. J Microcolumn Sep 12(2):93–97CrossRefGoogle Scholar
  80. Lau AY, Lee LP, Chan JW (2008) An integrated optofluidic platform for raman-activated cell sorting. Lab Chip 8(7):1116–1120CrossRefGoogle Scholar
  81. Lee SJ, Lee SY (2004) Micro total analysis system (μ-tas) in biotechnology. Appl Microbiol Biotechnol 64(3):289–299CrossRefGoogle Scholar
  82. Lee S-H, Cho SI, Lee C-S, Kim B-G, Kim Y-K (2005) Microfluidic chip for biochemical reaction and electrophoretic separation by quantitative volume control. Sens Actuators B 110(1):164–173MathSciNetCrossRefGoogle Scholar
  83. Lee M et al (2009a) Nanowire and nanotube transistors for lab-on-a-chip applications. Lab Chip 9(16):2267–2280CrossRefGoogle Scholar
  84. Lee Y-F, Lien K-Y, Lei H-Y, Lee G-B (2009b) An integrated microfluidic system for rapid diagnosis of dengue virus infection. Biosens Bioelectron 25(4):745–752CrossRefGoogle Scholar
  85. Li Y, Dalton C, Crabtree HJ, Nilsson G, Kaler KVIS (2007) Continuous dielectrophoretic cell separation microfluidic device. Lab Chip 7(2):239–248CrossRefGoogle Scholar
  86. Lien K-Y, Lin J-L, Liu C-Y, Lei H-Y, Lee G-B (2007) Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lab Chip 7(7):868–875CrossRefGoogle Scholar
  87. Lien K-Y et al (2008) Microfluidic systems integrated with a sample pretreatment device for fast nucleic-acid amplification. J Microelectromech Syst 17(2):288–301CrossRefGoogle Scholar
  88. Lin Y, Timchalk CA, Matson DW, Wu H, Thrall KD (2001) Integrated microfluidics/electrochemical sensor system for monitoring of environmental exposures to lead and chlorophenols. Biomed Microdevices 3(4):331–338CrossRefGoogle Scholar
  89. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831CrossRefGoogle Scholar
  90. Liu RH et al (2006a) Fully integrated miniature device for automated gene expression DNA microarray processing. Anal Chem 78(6):1980–1986Google Scholar
  91. Liu B-F, Xu B, Zhang G, Du W, Luo Q (2006b) Micro-separation toward systems biology. J Chromatogr A 1106(1–2):19–28CrossRefGoogle Scholar
  92. Liu D, Ou Z, Xu M, Wang L (2008) Simplified transient isotachophoresis/capillary gel electrophoresis method for highly sensitive analysis of polymerase chain reaction samples on a microchip with laser-induced fluorescence detection. J Chromatogr A 1214(1–2):165–170CrossRefGoogle Scholar
  93. Liu C-Y, Rick J, Chou T-C, Lee H-H, Lee G-B (2009) Integrated microfluidic system for electrochemical sensing of urinary proteins. Biomed Microdevices 11(1):201–211CrossRefGoogle Scholar
  94. Malic L, Kirk AG (2007) Integrated miniaturized optical detection platform for fluorescence and absorption spectroscopy. Sens Actuators A 135(2):515–524CrossRefGoogle Scholar
  95. Mao P, Han J (2009) Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab Chip 9(4):586–591CrossRefGoogle Scholar
  96. Marcus JS, Anderson WF, Quake SR (2006) Microfluidic single-cell mrna isolation and analysis. Anal Chem 78(9):3084–3089CrossRefGoogle Scholar
  97. Mariella R (2008) Sample preparation: the weak link in microfluidics-based biodetection. Biomed Microdevices 10(6):777–784CrossRefGoogle Scholar
  98. Matsushita Y et al (2008) Photocatalytic reactions in microreactors. Chem Eng J 135(Suppl 1):S303–S308CrossRefGoogle Scholar
  99. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499CrossRefGoogle Scholar
  100. Melin J et al (2004) A liquid-triggered liquid microvalve for on-chip flow control. Sens Actuators B 100(3):463–468CrossRefGoogle Scholar
  101. Mello AJD, Beard N (2003) Dealing with ‘real’ samples: sample pre-treatment in microfluidic systems. Lab Chip 3(1):11N–20NCrossRefGoogle Scholar
  102. Minas G, Wolffenbuttel RF, Correia JH (2005) A lab-on-a-chip for spectrophotometric analysis of biological fluids. Lab Chip 5:1303–1309CrossRefGoogle Scholar
  103. Munce NR, Li J, Herman PR, Lilge L (2004) Microfabricated system for parallel single-cell capillary electrophoresis. Anal Chem 76(17):4983–4989CrossRefGoogle Scholar
  104. Nguyen N-T, Huang X (2001) Miniature valveless pumps based on printed circuit board technique. Sens Actuators A 88(2):104–111CrossRefGoogle Scholar
  105. Nilsson A, Petersson F, Jonsson H, Laurell T (2004) Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4(2):131–135CrossRefGoogle Scholar
  106. Oh KW, Chinsung P, Kak N (2005) A world-to-chip microfluidic interconnection technology with dual functions of sample injection and sealing for a multichamber micro pcr chip. 18th IEEE international conference on micro electro mechanical systems, 2005 (MEMS 2005), pp 714–717Google Scholar
  107. Ölvecká E, Masár M, Kaniansky D, Jöhnck M, Stanislawski B (2001) Isotachophoresis separations of enantiomers on a planar chip with coupled separation channels. Electrophoresis 22(15):3347–3353CrossRefGoogle Scholar
  108. Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980CrossRefGoogle Scholar
  109. Pattekar AV, Kothare MV (2004) A microreactor for hydrogen production in micro fuel cell applications. J Microelectromech Syst 13(1):7–18CrossRefGoogle Scholar
  110. Perch-Nielsen IR, Rodrigo PJ, Alonzo CA, Glückstad J (2006) Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment. Opt Express 14(25):12199–12205CrossRefGoogle Scholar
  111. Petersen NJ, Mogensen KB, Kutter JP (2002) Performance of an in-plane detection cell with integrated waveguides for UV/VIS absorbance measurements on microfluidic separation devices. Electrophoresis 23:3528–3536CrossRefGoogle Scholar
  112. Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5(1):20–22CrossRefGoogle Scholar
  113. Piccin E, Laocharoensuk R, Burdick J, Carrilho E, Wang J (2007) Adaptive nanowires for switchable microchip devices. Anal Chem 79(12):4720–4723CrossRefGoogle Scholar
  114. Pipper J, Zhang Y, Neuzil P, Hsieh T-M (2008) Clockwork pcr including sample preparation. Angew Chem Int Ed 47(21):3900–3904CrossRefGoogle Scholar
  115. Popovtzer R, Neufeld T, Ron Ez, Rishpon J, Shacham-Diamand Y (2006) Electrochemical detection of biological reactions using a novel nano-bio-chip array. Sens Actuators B 119:664–672CrossRefGoogle Scholar
  116. Ramadan Q, Samper V, Poenar DP, Yu C (2006) An integrated microfluidic platform for magnetic microbeads separation and confinement. Biosens Bioelectron 21(9):1693–1702CrossRefGoogle Scholar
  117. Renzi RF et al (2004) Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins. Anal Chem 77(2):435–441CrossRefGoogle Scholar
  118. Rhee M, Burns MA (2008) Microfluidic assembly blocks. Lab Chip 8:1365–1373CrossRefGoogle Scholar
  119. Sabounchi P et al (2008) Sample concentration and impedance detection on a microfluidic polymer chip. Biomed Microdevices 10(5):661–670CrossRefGoogle Scholar
  120. Samel B, Nock V, Russom A, Griss P, Stemme G (2007) A disposable lab-on-a-chip platform with embedded fluid actuators for active nanoliter liquid handling. Biomed Microdevices 9(1):61–67CrossRefGoogle Scholar
  121. Schulte T, Bardell R, Weigl BH (2000) Sample acquisition and control on-chip microfluidic sample preparation. JALA 5(4):83–86Google Scholar
  122. Schuster TG, Cho B, Keller LM, Takayama S, Smith GD (2003) Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed 7(1):75–81 OnlineCrossRefGoogle Scholar
  123. Seo S, Su T-W, Erlinger A, Ozcan A (2008) Multi-color lucas: lensfree on-chip cytometry using tunable monochromatic illumination and digital noise reduction. Cel Mol Bioeng 1:146–156CrossRefGoogle Scholar
  124. Shaikh KA et al (2005) A modular microfluidic architecture for integrated biochemical analysis. PNAS 102(28):9745–9750CrossRefGoogle Scholar
  125. Shih P-H et al (2008) On chip sorting of bacterial cells using sugar-encapsulated magnetic nanoparticles. J Appl Phys 103(7):07A316–313Google Scholar
  126. Stanislas K (2003) Discussion on optical integration in lab-on-a-chip microsystems for medical diagnostics. Physica Status Solidi (C) 0(3):998–1012CrossRefGoogle Scholar
  127. Steigert J et al (2005) Integrated sample preparation, reaction, and detection on a high-frequency centrifugal microfluidic platform. JALA 10(5):331–341Google Scholar
  128. Sudarsan AP, Ugaz VM (2006) Fluid mixing in planar spiral microchannels. Lab Chip 6(1):74–82CrossRefGoogle Scholar
  129. Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B 96(1–2):38–45CrossRefGoogle Scholar
  130. Suzuki H, Ho C-M, Kasagi N (2004) A chaotic mixer for magnetic bead-based micro cell sorter. J Microelectromech Syst 13(5):779–790CrossRefGoogle Scholar
  131. Suzuki Y, Yokoyama K, Namatame I (2006) Rapid and easy protein staining for SDS-page using an intramolecular charge transfer-based fluorescent reagent. Electrophoresis 27(17):3332–3337CrossRefGoogle Scholar
  132. Szita N et al (2005) Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 5(8):819–826CrossRefGoogle Scholar
  133. Tai C-H, Hsiung S-K, Chen C-Y, Tsai M-L, Lee G-B (2007) Automatic microfluidic platform for cell separation and nucleus collection. Biomed Microdevices 9(4):533–543CrossRefGoogle Scholar
  134. Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7):778–784CrossRefGoogle Scholar
  135. Tang X et al (2006) Carbon nanotube DNA sensor and sensing mechanism. Nano Lett 6(8):1632–1636CrossRefGoogle Scholar
  136. Tsai C-H, Wang Y-N, Lin C-F, Yang R-J, Fu L-M (2006) Experimental and numerical investigation into leakage effect in injectors of microfluidic devices. Electrophoresis 27(24):4991–4998CrossRefGoogle Scholar
  137. Tseng H-Y, Wang C-H, Lin W-Y, Lee G-B (2007) Membrane-activated microfluidic rotary devices for pumping and mixing. Biomed Microdevices 9(4):545–554CrossRefGoogle Scholar
  138. Ukita Y et al (2008) Application of vertical microreactor stack with polystylene microbeads to immunoassay. Sens Actuators A 145–146:449–455Google Scholar
  139. Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal ChemGoogle Scholar
  140. Vieillard J et al (2007) Application of microfluidic chip with integrated optics for electrophoretic separations of proteins. J Chromatogr B 845(2):218–225CrossRefGoogle Scholar
  141. Wang C-H, Lee G-B (2005) Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection. Biosens Bioelectron 21(3):419–425MATHMathSciNetCrossRefGoogle Scholar
  142. Wang T-H, Chen Y-F, Masset S, Ho C-M, Tai Y-C (2000) Molecular beacon based micro biological detection system. In: Proceedings of international conference on mathematics and engineering techniques in medicine and biological sciencesGoogle Scholar
  143. Wang J, Escarpa A, Pumera M, Feldman J (2002) Capillary electrophoresis-electrochemistry microfluidic system for the determination of organic peroxides. J Chromatogr A 952(1–2):249–254Google Scholar
  144. Wang X, Saridara C, Mitra S (2005) Microfluidic supported liquid membrane extraction. Anal Chim Acta 543(1–2):92–98CrossRefGoogle Scholar
  145. Wang A-J, Xu J-J, Chen H-Y (2006) Proteins modification of poly(dimethylsiloxane) microfluidic channels for the enhanced microchip electrophoresis. J Chromatogr A 1107(1–2):257–264MathSciNetCrossRefGoogle Scholar
  146. Wang Y, Zhe J, Chung B, Dutta P (2008) A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4(5):375–389CrossRefGoogle Scholar
  147. Waterval JCM, Lingeman H, Bult A, Underberg WJM (2000) Derivatization trends in capillary electrophoresis. Electrophoresis 21(18):4029–4045CrossRefGoogle Scholar
  148. Wei F et al (2008) Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe. Nucl Acids Res 36(11):e65Google Scholar
  149. Weigl B, Bardell R, Kesler N, Morris C (2001) Lab-on-a-chip sample preparation using laminar fluid diffusion interfaces—computational fluid dynamics model results and fluidic verification experiments. Fresenius’ J Anal Chem 371(2):97–105CrossRefGoogle Scholar
  150. Wiles C, Watts P (2007) Parallel synthesis in an EOF-based micro reactor. Chem Commun 46:4928–4930CrossRefGoogle Scholar
  151. Wong SH, Ward MCL, Wharton CW (2004) Micro t-mixer as a rapid mixing micromixer. Sens Actuators B 100(3):359–379CrossRefGoogle Scholar
  152. Wu A, Wang L, Jensen E, Mathies R, Boser B (2010a) Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 10(4):519–521CrossRefGoogle Scholar
  153. Wu H-W, Hsu R-C, Lin C-C, Hwang S-M, Lee G-B (2010b) An integrated microfluidic system for isolation, counting, and sorting of hematopoietic stem cells. Biomicrofluidics 4(2):024112CrossRefGoogle Scholar
  154. Xia HM, Wan SYM, Shu C, Chew YT (2005) Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low reynolds numbers. Lab Chip 5(7):748–755CrossRefGoogle Scholar
  155. Yang Z, Goto H, Matsumoto M, Maeda R (2000) Active micromixer for microfluidic systems using lead-zirconate-titanate(pzt)-generated ultrasonic vibration. Electrophoresis 21(1):116–119CrossRefGoogle Scholar
  156. Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R (2001) Ultrasonic micromixer for microfluidic systems. Sens Actuators A 93(3):266–272CrossRefGoogle Scholar
  157. Yang Y, Li C, Kameoka J, Lee KH, Craighead HG (2005) A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry. Lab Chip 5(8):869–876CrossRefGoogle Scholar
  158. Yin D et al (2007) Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip 7(9):1171–1175CrossRefGoogle Scholar
  159. Yoo J-C, Moon M-C, Choi YJ, Kang CJ, Kim Y-S (2006) A high performance microfluidic system integrated with the micropump and microvalve on the same substrate. Microelectron Eng 83(4–9):1684–1687CrossRefGoogle Scholar
  160. Yu H, Kwon JW, Kim ES (2005) Chembio extraction on a chip by nanoliter droplet ejection. Lab Chip 5(3):344–349CrossRefGoogle Scholar
  161. Zhu L, Lee CS, De Voe DL (2006) Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA. Lab Chip 6(1):115–120MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of EngineeringDeakin UniversityWaurn PondsAustralia
  2. 2.School of MedicineDeakin UniversityWaurn PondsAustralia

Personalised recommendations