Advertisement

Microsystem Technologies

, Volume 16, Issue 11, pp 1893–1899 | Cite as

Biodegradable submicrometric sieves in PLLA fabricated by soft lithography

  • Luis Gutierrez-Rivera
  • Lucila Cescato
Technical Paper

Abstract

Sieves are membranes with a regular array of uniform pores that present low flow resistance. Because of such characteristics they are promising devices for filtration, separation of particles by size and drug delivery control systems. In this paper, we propose and demonstrated the use of a soft lithography process for fabrication of biodegradable sieves in PLLA (poly-l-lactide) with pores in the scale of hundred of nanometers. The fabrication process is suitable for mass production and submicrometric pore diameters can be fabricated with homogeneity of about 15%. The PLLA self sustained sieve can be integrated to PLLA capsules, compounding a drug delivery systems or implants.

Keywords

PDMS PLLA PDMS Mold PDMS Film Interference Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico do Brasil (CNPQ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

  1. Calvo JI, Hernandez A, Pradanos P, Martinez L, Bowen WR (1995) Pore size distribution in microporous membranes. II. Bulk characterization of track-etched filters by air porometry and mercury prosimetry. J Colloid Interf Sci 176:467–478CrossRefGoogle Scholar
  2. Chan VZH, Hoffman J, Lee VY, Iatrou H, Avgeropoulos A, Hadjichristidis N, Miller RD, Thomas EL (1999) Ordered bicontinuous nanoporous and nano ceramic films from self assembling polymer precursors. Science 286:1716CrossRefGoogle Scholar
  3. Choi KM, Rogers J (2003) A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J Am Chem Soc 125(14):4060–4061CrossRefGoogle Scholar
  4. Gironès M, Akbarsyah IJ, Nijdam W, Rijn CJM, Jansen HV, Lammertink RGH, Wessling M (2006) Polymeric microsieves produced by phase separation micromolding. J Memb Science 283(1–2, 20):411–424Google Scholar
  5. Gutierrez-Rivera L, Cescato L (2008) SU-8 submicrometric sieves recorded by UV interference lithography. J Micromech Microeng 18(115003):6Google Scholar
  6. Gutierrez-Rivera LE, Carvalho EJ, Aparecida MS, Cescato L (2005) Metallic submicrometer sieves fabricated by interferometric lithography and electroforming. J Micromech Microeng 15:1932–1937CrossRefGoogle Scholar
  7. Han K, Xu W, Ruiz A, Ruchhoeft P, Chellam S (2005) Fabrication and characterization of polymeric microfiltration membranes using aperture array lithography. J Memb Sci 249:193–206CrossRefGoogle Scholar
  8. Han M, Kim DK, Kang SH, Yoon SR, Kim BY, Lee SS (2009) Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array. Sens Actuators B Chem 137(1):274–280CrossRefGoogle Scholar
  9. Kuiper S, Boer M, Rijn CV, Nijdam W, Krijnen G, Elwenspoek M (2000) Wet and dry etching techniques for the release of sub-micrometre perforated membranes. J Micromech Microeng 10:171–174CrossRefGoogle Scholar
  10. Kuiper S, Wolferen H, Rijn CV, Nijdam W, Krijnen G, Elwenspoek M (2001) Fabrication of microsieves with sub-micron pore size by laser interference lithography. J Micromech Microeng 11:33–37CrossRefGoogle Scholar
  11. Lytle CD, Routson LB, Jain NB, Myers MR, Green BL (1999) Virus passage through track-etch membranes modified by salinity and a nonionic surfactant. Appl Environ Microbiol 65(6):2773–2775Google Scholar
  12. Peterson SL, McDonald A, Gourley PL, Sasaki DY (2004) Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. J Biomed Mater Res B Appl Biomater 72A(1):10–18CrossRefGoogle Scholar
  13. Redentia S, Neeleyb WL, Rompanic S, Saigala S, Yangd J, Klassend H, Langerb R, Younga MJ (2009) Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 30(20):3405–3414CrossRefGoogle Scholar
  14. Saito Y, Minami K, Kobayashi M, Nakao Y, Omiya H, Imamura H, Sakaida N, Okamura A (2002) New tubular bioabsorbable knitted airway stent: biocompatibility and mechanical strength. J Thorac Cardiovasc Surg 123:161–167CrossRefGoogle Scholar
  15. Shawgo RS, Grayson ACR, Li Y, Cima MJ (2002) BioMEMS for drug delivery. Curr Opinion Solid State Mater Sci 6(4):329–334CrossRefGoogle Scholar
  16. Walton M, Cotton NJ (2006) Long-term in vivo degradation of poly-l-lactide (PLLA) in bone. J Biomater Appl (Online First). doi: 10.1177/0885328206065125
  17. Xiao SZL, Han CY, Welp U, Wang HH, Kwok WK, Willing GA, Hiller JM, Cook RE, Miller DJ, Crabtree GW (2002) Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes. Nano Lett 2(11):1293–1297CrossRefGoogle Scholar
  18. Xu B, Arias F, Brittan S, Zhao X, Whitesides G (1999) Making negative Poisson’s ratio microstructures by soft lithography. Adv Mater vol 11, No. 14Google Scholar
  19. Zhang Y, Chi-Wei L, Taylor JA, Yang S (2006) Replic molding of high-aspect ratio polymeric nanopillar array with high fidelity. Langmuir 22:8595–8601CrossRefGoogle Scholar
  20. Zhao Y, Zhang X (2005) Contraction force measurements in cardiac myocytes using PDMS pillar arrays. IEEE Xplore 30 Jan–3 Feb, pp 834–837Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Optics Laboratory, Institute of Physics Gleb WataghinUniversity of Campinas, UNICAMPCampinasBrazil

Personalised recommendations