Microsystem Technologies

, Volume 16, Issue 11, pp 1861–1868 | Cite as

Miniaturization limits of field-effect based MEMS accelerometers

  • Manuel Engesser
  • Oleg Jakovlev
  • Axel R. Franke
  • Jan G. Korvink
Technical Paper

Abstract

Accelerometers are increasingly gaining in importance in the consumer electronics sector. To estimate whether field-effect based accelerometers have an advantage over sensor types common today, we analyze their scaling performance in this paper. Within the scope of this research, firstly we create an analytical model and subsequently verify it by numerical simulation. Based thereon, a numerical–analytical study of the scaling performance follows. The requirements are based on a commercially available capacitive accelerometer. We identify the main miniaturization limits of field-effect based accelerometers, which are total noise and pull-in effect. Those limits lead to a total area estimation for a triaxial MEMS accelerometer core of only 410 μm × 300 μm.

References

  1. Andre PL, Baillieu FG, Brosselard J-PY, Dreyfus GRBA, Permuy A, Pirot F-X, Spirkovitch S (1986) Integrated capacitive sensor for mechanical quantities, and manufacturing method. European patent EP0194953Google Scholar
  2. Bosch Sensortec GmbH (2010) Data sheet BMA150 Digital, triaxial acceleration sensor. http://www.bosch-sensortec.com
  3. Buschnakowski S, Bertz A, Brauer W, Heinz S, Schuberth R, Ebest G, Gessner T (2003) Development and characterisation of a high aspect ratio vertical FET sensor for motion detection. In: TRANSDUCERS, 12th international conference on solid-state sensors, actuators and microsystems, Boston, vol. 2, pp 1391–1394Google Scholar
  4. Dietrich K, Kroy W, Messerschmitt-Boelkow-Blohm GmbH (1988) USA patent 772,928, 20 Sept 1988. Pr.: DE 3515349, 27 Apr 1985Google Scholar
  5. Elwenspoek M, Wiegerink R (2001) Mechanical microsensors. Springer, BerlinGoogle Scholar
  6. Engesser M, Franke AR, Maute M, Meisel DC, Korvink JG (2009) Miniaturization limits of piezoresistive MEMS accelerometers. Microsyst Technol 15:1835–1844CrossRefGoogle Scholar
  7. Kniffin ML, Wiegele TG, Masquelier MP, Fu H, Whitfield JD (1998) Modeling and characterization of an integrated FET accelerometer. In: Technical proceedings of the 1998 international conference on modeling and simulation of microsystems, pp 546–551Google Scholar
  8. Nathanson HC, Newell WE, Wickstrom RA, Davis JR Jr (1967) The resonant gate transistor. IEEE Trans Electron Devices 14:117–133CrossRefGoogle Scholar
  9. Song I-H (2005) Laterally movable gate field effect transistor (LMGFET) for microsensor and microactuator applications. PhD thesis, Louisiana State UniversityGoogle Scholar
  10. Song I-H, Ajmera PK (2009) A laterally movable gate field effect transistor. Microelectromech Syst 18:208–216CrossRefGoogle Scholar
  11. Tsividis Y (1999) Operation and modeling of the MOS transistor, 2nd edn. McGraw-Hill, BostonGoogle Scholar
  12. Yee Y, Bu JU, Chun K, Lee J-W (2000) An integrated digital silicon micro-accelerometer with MOSFET-type sensing elements. Micromech Microeng 10:350–358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Manuel Engesser
    • 1
  • Oleg Jakovlev
    • 1
  • Axel R. Franke
    • 1
  • Jan G. Korvink
    • 2
    • 3
  1. 1.Robert Bosch GmbHGerlingenGermany
  2. 2.Department of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
  3. 3.Freiburg Institute of Advanced Studies (FRIAS)University of FreiburgFreiburgGermany

Personalised recommendations