Microsystem Technologies

, Volume 16, Issue 8–9, pp 1293–1298

Synchrotron laboratory for micro and nano devices: facility concept and design

  • Sven Achenbach
  • Venkat Subramanian
  • David Klymyshyn
  • Garth Wells
Technical Paper


SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, is a new deep X-ray lithography facility focusing on spectral and beam power adjustability and large exposable area formats. We present the concept of the bend magnet beamline and its main components. A double disk intensity chopper offers the unique capability of continuous average beam power reduction to a range between 261 W and approximately 0.1 W without affecting the spectrum. Continuous spectral tuning between 1–2 keV and >15 keV photon energy is achieved using a double mirror system and low atomic number pre-filters. The radiation fan is more than 150 mm wide, allowing for full 6″ wafer exposure under vacuum conditions. We furthermore describe the vacuum window concept that was required as a result of the large exposure area and broad spectral tunability.


  1. Achenbach S, Pantenburg FJ, Mohr J (2003) Numerical simulation of heating and thermal distortions during exposure in deep X-ray lithography microstructures. Microsyst Technol 9(3):220–224CrossRefGoogle Scholar
  2. Achenbach S, Klymyshyn D, Subramanian V (2005) Conceptual design report for SyLMAND “Synchrotron Laboratory for Micro and Nano Devices”. The Canadian Light Source Inc., CLSI, SaskatoonGoogle Scholar
  3. Achenbach S, Klymyshyn D, Subramanian V, Reuther F, Mullin C, Wells G, Nagarkal V (2009) An ultra-large-area Beryllium vacuum window for the X-ray lithography beamline SyLMAND at the Canadian Light Source. Nucl Instrum Methods Phys Res AGoogle Scholar
  4. Aigeldinger G, Coane P, Craft B, Goettert J, Ledgers S, Zhong GL, Manohara H, Rupp L (2000) Preliminary results at the ultra deep X-ray lithography beamline at CAMD. Proc SPIE 4019: 429–435. http://www.camd.lsu.edu/microfabrication/index.htm
  5. Becker EW, Ehrfeld W, Hagmann P, Maner A, Münchmeyer D (1986) Fabrication of Microstructures with high Aspect Ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microel Eng 4(1):36–56CrossRefGoogle Scholar
  6. Chou MC, Pan CT, Wu TT, Wu CT (2008) Study of deep X-ray lithography behaviour for microstructures. Sens Act A 141:703–711CrossRefGoogle Scholar
  7. Feiertag G, Ehrfeld W, Lehr H, Schmidt A, Schmidt M (1997) Calculation and experimental determination of the structure transfer accuracy in deep x-ray lithography. J Micromech Microeng 7:323–331CrossRefGoogle Scholar
  8. Guckel H, Christenson TR, Skrobis K (1995) Formation of microstructures using a preformed photoresist sheet. US Patent 5378583Google Scholar
  9. Jian LK, Casse BDF, Heussler SP, Kong HR, Moser HO, Ren YP, Saw BT, bin Mahmood S (2007) X-ray-based micro/nanomanufacturing at SSLS—technology and applications. AIP Conf Proc 879(2):1512–1515CrossRefGoogle Scholar
  10. Johnson ED, Milne JC, Siddons DP, Guckel H, Klein JL (1996) Precision machining with hard X-rays: experiments at the NSLS. Synchr Rad News 9(4):10–13CrossRefGoogle Scholar
  11. Loechel B, Jian L, Scheunemann HU, Schondelmaier D, Goettert J, Desta YM (2002) Providing a direct-LIGA service: a Status Report. Proc COMS 2002, Ypsilanti, MI. http://www.helmholtz-berlin.de/forschung/grossgeraete/azm/hzb-intern/verfahren_en.html
  12. Mancini D, Moldovan N, Divan R, DeCarlo F, Yaeger J (2002) X-ray lenses fabricated by deep x-ray lithography. Proc SPIE 4783:28–36CrossRefGoogle Scholar
  13. Megtert S, Bouamrane F, Bouvert T (2007) LIGA from LURE to SOLEIL. Proc HARMST, pp 27–28Google Scholar
  14. Mohr J, Ehrfeld W, Münchmeyer D (1988) Analyse der Defektursachen und der Genauigkeit der Strukturübertragung bei der Röntgentiefenlithographie mit Synchrotronstrahlung. Kernforschungszentrum Karlsruhe, KfK 4414Google Scholar
  15. Mohr J, Achenbach S, Börner M, Schulz J (2004) Research activities in the LIGA laboratory at ANKA. ANKA Beamline Book, pp 10–15. http://ankaweb.fzk.de/website.php?page=instrumentation_beam
  16. Morales A (1999) Sand Rep, 99–8228Google Scholar
  17. Nagarkal V, Mullin C, Achenbach S, Subramanian V, Wells G (2008) Mechanical design of a radiatively cooled intensity chopper. Proceedings/Abstracts, 5th International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI), Saskatoon, Canada, 105, 10–13 JuneGoogle Scholar
  18. Namkung W (1998) Present status of the Pohang light source. J Synchr Rad 5:158–161CrossRefGoogle Scholar
  19. Pantenburg FJ, Mohr J (1995) Influence of secondary effects on the structure quality in deep X-ray lithography. Nucl Instrum Methods Phys Res B 97:551–556CrossRefGoogle Scholar
  20. Pantenburg FJ, Mohr J (2001) Deep X-ray lithography for the fabrication of microstructures at ELSA. Nucl Instr Phys Res A 467:1269–1273CrossRefGoogle Scholar
  21. Subramanian V, Achenbach S, Klymyshyn D, Wells G, Dolton W, Nagarkal V, Yates B, Mullin C, Augustin M (2009) In situ diagnostic capabilities for beam position and beam intensity monitoring at SyLMAND. Microsys Technol. doi:10.1007/s00542-010-1088-7
  22. Utsumi Y, Kishimoto T, Hattori T, Hara H (2007) Large area and wide dimensions X-ray lithography using energy variable synchrotron radiation. Microsys Tech 13(5–6):417–423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sven Achenbach
    • 1
    • 3
    • 4
  • Venkat Subramanian
    • 2
  • David Klymyshyn
    • 1
    • 3
  • Garth Wells
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Canadian Light Source Inc.SaskatoonCanada
  3. 3.TRLabsSaskatoonCanada
  4. 4.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations