Microsystem Technologies

, Volume 16, Issue 5, pp 745–754 | Cite as

Fast transient temperature operating micromachined emitter for mid-infrared optical gas sensing systems: design, fabrication, characterization and optimization

  • J. Hildenbrand
  • C. Peter
  • F. Lamprecht
  • A. Kürzinger
  • F. Naumann
  • M. Ebert
  • R. Wehrspohn
  • J. G. Korvink
  • J. Wöllenstein
Technical Paper

Abstract

A novel micromachined thermal emitter for fast transient temperature operation is presented. Compared to most commercial available thermal emitters, the one here presented is able to operate in a pulsed mode. This allows the use of lock-in techniques or pyrodetectors in the data acquisition without the use of an optical chopper for light modulation. Therefore, these types of thermal emitters are very important for small filter photometers. Several hot-plate suspension concepts were studied in order to find a design with excellent mechanical stability and high thermal decoupling. In contrary to the classical spider suspension design, a novel approach based on a non-axis-symmetric design is presented. The thermal emitters are fabricated using silicon on insulator technology and KOH-etching. The emitters are heated with Pt-meanders. For temperature determination an additional Pt-structure is deposited onto the hot-plates. The emitters are mounted in TO-5 housings using a ceramic adhesive and gold wire bonding. The used operation temperature is 750°C. In pulsed operation it’s important to have a large modulation depth in terms of thermal radiation intensity in the needed spectral range. The maximal reachable modulation depth ranges from ambient temperature to steady state temperature. A modulation frequency of 5 Hz still allows using nearly the maximum modulation depth. A parameterized finite element model was realized and adapted to the measured data. This was the basis for the numerical optimization procedure for a new improved design.

References

  1. ANSYS (2009) www.ansys.com
  2. axetris (2007) Ir source, data sheet. Leaflet F25/09.2003/05.06Google Scholar
  3. Barrettino D, Graf M, Zimmermann M, Hagleitner C, Hierlemann A, Baltes H (2004) A smart single-chip micro-hotplate-based gas sensor system in cmos-technology. Analog Integr Circuits Signal Process 39(3):275–287CrossRefGoogle Scholar
  4. Brede M (1993) The brittle-to-ductile transition in silicon. Acta Metallurgica et Materialia 41:211–228CrossRefGoogle Scholar
  5. Briand D, Krauss A, van der Schoot B, Weimar U, Barsan N, Göpel W, de Rooij NF (2000) Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors. Sensors and Actuators B: Chem 68(1–3):223–233CrossRefGoogle Scholar
  6. Briand D, Heimgartner S, Gretillat M-A, van der Schoot B, de Rooij NF (2002) Thermal optimization of micro-hotplates that have a silicon island. J Micromech Microeng 12(6):971–978CrossRefGoogle Scholar
  7. Demarne V, Grisel A (1988) An integrated low-power thin-film co gas sensor on silicon. Sensors and Actuators 13(4):301–313CrossRefGoogle Scholar
  8. Dibbern U (1990) A substrate for thin-film gas sensors in microelectronic technology. Sensors and Actuators B: Chem 2(1):63–70CrossRefGoogle Scholar
  9. Elmi I, Zampolli S, Cozzani E, Passini M, Pizzochero G, Cardinali GC, Severi M (2007) Ultra low power mox sensors with ppb-level VOC detection capabilities. In IEEE Sensors 2007, pp 170–173Google Scholar
  10. Frühauf J, Gärtner E, Jänsch E (1999) Silicon as a plastic material. J Micromech Microeng 9:305–312CrossRefGoogle Scholar
  11. Gall M (1991) The Si planar pellistor: a low-power pellistor sensor in Si thin-film technology. Sensors and Actuators B: Chem 4(3–4):533–538CrossRefGoogle Scholar
  12. Gardner JW, Pike A, De Rooij NF, Koudelka-Hep M, Clerc PA, Hierlemann A, Göpel W (1995) Integrated array sensor for detecting organic solvents. Sensors and Actuators B: Chem 26(1–3):135–139CrossRefGoogle Scholar
  13. Guidi V, Cardinali GC, Dori L, Faglia G, Ferroni M, Martinelli G, Nelli P, Sberveglieri G (1998) Thin-film gas sensor implemented on a low-power-consumption micromachined silicon structure. Sensors and Actuators B: Chem 49(1–2):88–92CrossRefGoogle Scholar
  14. Hildenbrand J, Wöllenstein J, Spiller E, Kühner G, Böttner H, Urban GA, Korvink JG (2002) Design and fabrication of a novel low-cost hotplate micro gas sensor. In Design, Test, Integration, and Packaging of MEMS/MOEMS, pp 191–199Google Scholar
  15. icx photonics (2007) Broadband pulsed infrared light sources, data sheetGoogle Scholar
  16. Intex and Laser Components (2006) Pulsed broadband infrared light source, mirl17-900, data sheetGoogle Scholar
  17. Laser Components (2007) Cal-sourceTM infrared emitters, pulsable ir emitters: Svf-series, data sheetGoogle Scholar
  18. optiSLang (2009) www.optislang.com
  19. Park HS, Shin HW, Yun DH, Hong H-K, Kwon CH, Lee K, Kim S-T (1995) Tin oxide micro gas sensor for detecting CH3SH. Sensors and Actuators B: Chem 25(1–3):478–481CrossRefGoogle Scholar
  20. scitec (2007a) Series 40, thin film 1.2 and 4 watt infra-red emitters, data sheet, Issue 1.4Google Scholar
  21. scitec (2007b) Series 50, thin film 0.9 watt infra-red emitter, data sheet, Issue 1.2Google Scholar
  22. Simon I, Barsan N, Bauer M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sensors and Actuators B: Chem 73(1):1–26CrossRefGoogle Scholar
  23. Skotheim TS, Kirpilenko GG, Dmitriev VK, Ohlckers P, Kunsch J (2008) Nanoarmophous carbon miniature thermal infrared source. In VDI-Berichte 2047Google Scholar
  24. Spannhake J, Schulz O, Helwig A, Müller G, Doll T (2005) Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems. In Sensor 2005. IEEEGoogle Scholar
  25. Spannhake J, Schulz O, Helwig A, Krenkow A, Müller G, Doll T (2006) High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials. Sensor 6(4):405–419CrossRefGoogle Scholar
  26. Spannhake J, Helwig A, Müller G, Faglia G, Sberveglieri G, Doll T, Wassner T, Eickhoff D (2007) SnO2:Sb a new material for high-temperature mems heater applications: Performance and limitations. Sensors and Actuators B: Chem 124(2):421–428CrossRefGoogle Scholar
  27. Wöllenstein J (2003) Zur Selektivitätssteigerung von Halbleitergassensoren. PhD thesis, Universität KasselGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • J. Hildenbrand
    • 1
  • C. Peter
    • 3
  • F. Lamprecht
    • 3
  • A. Kürzinger
    • 3
  • F. Naumann
    • 4
  • M. Ebert
    • 4
  • R. Wehrspohn
    • 4
  • J. G. Korvink
    • 1
    • 2
  • J. Wöllenstein
    • 1
  1. 1.Department of Microsystems EngineeringIMTEKFreiburgGermany
  2. 2.Freiburg Institute for Advanced Studies (FRIAS)FreiburgGermany
  3. 3.Fraunhofer Institute for Physical Measurement TechniqueFreiburgGermany
  4. 4.Fraunhofer Institute for Mechanics of MaterialsHalleGermany

Personalised recommendations