Microsystem Technologies

, Volume 16, Issue 8–9, pp 1665–1671 | Cite as

RMS voltage sensor based on a variable parallel-plate capacitor made of electroplated copper

  • Jan Dittmer
  • Lars Hecht
  • Rolf Judaschke
  • Stephanus Büttgenbach
Technical Paper


We present an advanced RMS voltage sensor based on a variable parallel-plate capacitor using the principle of electrostatic force. The device is fabricated in a micromechanical surface process with a high-aspect ratio actuator, reinforced by copper electroplating employing a sacrificial photo-resist layer. Another copper layer with a coplanar waveguide below the actuator provides separated excitation and sensing electrodes. Flip-chip technology is employed for low-loss electrical connectivity. The presented design has a plate area of up to 3 × 3 mm2 and an initial gap distance of only 1.5 μm. We present results achieving a pull-in voltage below 1 V at frequencies from DC up to 1 GHz and sensitivities up to 1 fF/mV.


Sacrificial Layer Coplanar Waveguide Stiff Actuator Surface Micromachining Process Copper Seed Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been undertaken as a joined research project of the Institute of Microtechnology at the Technische-Universität Braunschweig and the High-Frequency Measuring Group of the Physikalisch-Technische Bundesanstalt (PTB).


  1. Balaraman D, Bhattacharya SK, Ayazi F, Papapolymerou J (2002) Low-cost low actuation voltage copper RF MEMS switches. In: Microwave Symposium Digest, 2002 IEEE MTT-S International, pp 1225–1228Google Scholar
  2. Bartek M, Xiao Z, Van Mullem C, Wolfenbuttel RF (2001) Bulk-micromachined electrostatic RMS-to-DC. IEEE Trans Instrum Meas 50(6):1508–1511CrossRefGoogle Scholar
  3. Dittmer J, Judaschke R, Büttgenbach S (2008) Micro-fabricated electrostatic voltage sensor with variable parallel-plate capacitor. In: Proceedings of micro- and nano-engineering. Athen, Greek 15–19 September 2008, p 354Google Scholar
  4. Drienhuizen BP (1996) Integrated electrostatic RMS-to-DC converter fabricated in a BIFET-compatible surface micromachining process. Delft University PressGoogle Scholar
  5. Fernandez LJ, Wiegerink RJ, Flokstra J, Sese J, Jansen HV, Elwenspoek M (2006) A capacitive RF power sensor based on MEMS technology. J Micromech Microeng 16:1099–1107CrossRefGoogle Scholar
  6. Harsh KF, Zhang W, Bright VM, Lee YC (1999) Flip-chip assembly for Si-based RF MEMS. In: Micro electro mechanical systems, MEMS ’99, Twelfth IEEE International Conference on, 17–21 January 1999, pp 273–278Google Scholar
  7. Kärkkäinen A, Awan SA, Kyynäräinen J, Pekko P, Oja AS, Seppä H (2005) Optimized design and process for making a DC voltage reference based on MEMS. IEEE Trans Instrum Meas 54(2):563–566CrossRefGoogle Scholar
  8. Pamidighantam S, Puers R, Baert K, Tilmans HAC (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed-free end conditions. J Micromech Microeng 12:458–464CrossRefGoogle Scholar
  9. Park JH, Kim HT, Kwon Y, Kim YK (2001) Tunable millimeter-wave filters using a coplanar waveguide and micromachined variable capacitors. J Micromech Microeng 11:706–712CrossRefGoogle Scholar
  10. Rebeiz GM (2003) RF MEMS theory, design, and technology. Wiley, HobokenCrossRefGoogle Scholar
  11. Roark RJ, Young WC (1989) Formulas for stress and strain, 6th edn. McGraw-Hill, New YorkGoogle Scholar
  12. Seidemann V, Büttgenbach S (2002) Fabrication technology for closely coupled micro coils with integrated flux guidance and their application to proximity and magnetoelastic force sensors. In: Proceedings of IEEE sensors 2002, vol 1, pp 580–584Google Scholar
  13. Taylor GN, Wolf TM (1980) Oxygen plasma removal of thin polymer films. Polym Eng Sci 20(16):1087–1092CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jan Dittmer
    • 1
    • 2
  • Lars Hecht
    • 1
  • Rolf Judaschke
    • 2
  • Stephanus Büttgenbach
    • 1
  1. 1.Institute for MicrotechnologyTechnische-Universität BraunschweigBraunschweigGermany
  2. 2.Physikalisch-Technische Bundesanstalt (PTB)BraunschweigGermany

Personalised recommendations