Microsystem Technologies

, Volume 16, Issue 8–9, pp 1529–1535 | Cite as

Micro gear validation: improving the correlation between virtual and physical testing

  • Albert Albers
  • Peter Börsting
  • Tobias Deigendesch
  • Hans-Georg Enkler
  • Pablo Leslabay
Technical Paper

Abstract

Downsizing mechanical systems requires the consideration of technological environment and restrictions. Nominal dimensions can be miniaturized, but shape and material deviations cannot be scaled down in the same way. In design these effects have to be considered and thus analyzed and evaluated in the very early activities. Simulation and test methods have to be adapted to the special characteristics of microtechnology. The present paper provides a strategy to validate micromechanical systems by means of virtual and physical testing. A standard test approach in macroscopic gear metrology, the tangential composite inspection, is used as validation tool for both test approaches. The results are very promising and show a good correlation between both miniaturized tests procedures.

Notes

Acknowledgments

We are grateful for the support provided by the German Research Foundation (DFG) within the collaborative research center (SFB) 499 “Development, production and quality assurance of primary shaped micro components from metallic and ceramic materials”.

References

  1. Albers A, Deigendesch T, Enkler H-G, Leslabay P, Oerding J (2008a) An integrated approach for validating micro mechanical systems. Microsyst Technol 14:1781–1787CrossRefGoogle Scholar
  2. Albers A, Enkler H-G, Leslabay P (2008b) On the simulation of molded micro components and systems. Microsyst Technol 14:1269–1277CrossRefGoogle Scholar
  3. Baltes H, Brand O, Fedder GK, Hierold C, Korvink JG, Tabata O (eds) (2005) Advanced micro and nanosystems, vol 3. Microengineering of metals and ceramics. Wiley, New YorkGoogle Scholar
  4. CRC499 DFG Collaborative Research Center (2009) http://www.sfb499.de (Accessed 2009-07-20)
  5. Fleischer J, Lanza G, Schlipf M, Behrens I (2006) Quality assurance and micro production. Microsyst Technol 12:707–712CrossRefGoogle Scholar
  6. Hauser S (2007) Konzepte zur Validierung geometrischer Charakteristika von Mikroverzahnungen und –getrieben. In: Institut für Produktentwicklung, Universität Karlsruhe, Dissertation. Fortschrittsberichte des Instituts für Produktentwicklung. Band 27Google Scholar
  7. Normenausschuss Antriebstechnik (NAN) (1987) im DIN Deutsches Institut für Normung e.V. DIN 3960: Definitions, parameters and equations for involute cylindrical gears and gear pairs. Beuth Verlag, BerlinGoogle Scholar
  8. Normenausschuss Feinmechanik und Optik (NaFuO) (1972) im DIN Deutsches Institut für Normung e.V. DIN 58405: Spur gear drives for fine mechanics. Beuth Verlag, BerlinGoogle Scholar
  9. Normenausschuss Feinmechanik und Optik (NaFuO) (1972) im DIN Deutsches Institut für Normung e.V. DIN 58420: Master gears for checking of spur gears for fine mechanics. Beuth Verlag, BerlinGoogle Scholar
  10. Ruh A, Dieckmann A-M, Heldele R, Piotter V, Ruprecht R, Munzinger J, Haußelt J (2008) Production of two-material micro-assemblies by two-component powder injection molding and sinter-joining. Microsyst Technol 14:1805–1811CrossRefGoogle Scholar
  11. Schoenberg IJ (1969) Approximations with special emphasis on spline functions. In: Proceedings of symposium mathematics research center, United States Army, Madison, 5–7 May 1969Google Scholar
  12. VDI/VDE Gesellschaft Mess- und Automatisierungstechnik (2001) VDI/VDE 2608: tangential composite and radial composite inspection of cylindrical gears, bevel gears, worms and worm wheels. Beuth, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Albert Albers
    • 1
  • Peter Börsting
    • 1
  • Tobias Deigendesch
    • 1
  • Hans-Georg Enkler
    • 1
  • Pablo Leslabay
    • 1
  1. 1.IPEK - Institute of Product DevelopmentKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations