Microsystem Technologies

, Volume 16, Issue 5, pp 825–836 | Cite as

Study on microstructural, chemical and electrical properties of tantalum nitride thin films deposited by reactive direct current magnetron sputtering

  • Michaela GrosserEmail author
  • M. Münch
  • J. Brenner
  • M. Wilke
  • H. Seidel
  • C. Bienert
  • A. Roosen
  • U. Schmid
Technical Paper


The properties of tantalum nitride (TaNx) thin films on silicon and low temperature co-fired ceramics based substrates were investigated with respect to their potential use for sensor elements operated under harsh environmental conditions. For deposition reactive direct current magnetron sputtering was applied at constant back pressure (=0.9 Pa) and plasma power (=1,000 W). In all experiments, the substrates were nominally unheated. The films were investigated electrically by four point probing. For morphological and chemical analyses, a large variety of techniques such as focussed ion beam, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and glow discharge optical emission spectroscopy were used. Only by combining all these techniques for analysing TaNx films synthesised with varying nitrogen content in the deposition chamber can a proper evaluation of the microstructure and the chemical composition be done. Both the microstructure and the chemical composition are influenced strongly with a resulting effect on the electrical film properties.


Glow Discharge Optical Emission Spectroscopy Increase Nitrogen Content Tantalum Nitride Pure Tantalum Secondary Electron Emission Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financed by the Deutsche Forschungsgemeinschaft (DFG, contract No.: RO 653/10-1 and SCHM 2409/1-1). This support is gratefully acknowledged.


  1. Abdin S, Val C (1979) The production of tantalum nitride film resistors using a continuous sputtering machine. Thin Solid Films 57:327–331. doi: 10.1016/0040-6090(79)90172-X CrossRefGoogle Scholar
  2. Ayerdi I, Castano E, Garcia-Alonso A, Gracia FJ (1994) Ceramic pressure sensor based on tantalum thin film. Sens Actuators A Phys 42:435–438. doi: 10.1016/0924-4247(94)80028-6 CrossRefGoogle Scholar
  3. Ayerdi I, Castano E, Garcia-Alonso A, Gracia FJ (1997) High-temperature ceramic pressure sensor. Sens Actuators A Phys 60:72–75. doi: 10.1016/S0924-4247(96)01438-0 CrossRefGoogle Scholar
  4. Baba K, Hatada R (1996) Synthesis and properties of tantalum nitride films formed by ion beam assisted deposition. Surf Coat Technol 84:429–433. doi: 10.1016/S0257-8972(95)02799-8 CrossRefGoogle Scholar
  5. Baunack S, Hoffmann V, Zahn W (2006) Quantitative nitrogen analysis by Auger electron spectrometry and glow discharge optical emission spectrometry. Microchim Acta 156:69–72. doi: 10.1007/s00604-006-0587-9 CrossRefGoogle Scholar
  6. Chang C-C, Jeng JS, Chen JS (2002) Microstructural and electrical characteristics of reactively sputtered Ta-N thin films. Thin Solid Films 413:46–51. doi: 10.1016/S0040-6090(02)00342-5 CrossRefGoogle Scholar
  7. Chang C-C, Chen JS, Hsu W-S (2004) Failure mechanism of amorphous and crystalline Ta-N films in the Cu/Ta-N/Ta/SiO2 structure. J Electrochem Soc 151:G746–G750. doi: 10.1149/1.1803836 CrossRefGoogle Scholar
  8. Chen GS, Lee PY, Chen ST (1999) Phase formation behavior and diffusion barrier property of reactively sputtered tantalum-based thin fillms used in semiconductor metallization. Thin Solid Films 353:246–273. doi: 10.1016/S0040-6090(99)00431-9 Google Scholar
  9. Chen GS, Chen ST, Huang SC, Lee HY (2001) Growth mechanism of sputter deposited Ta and Ta-N thin films induced by an underlying titanium layer and varying nitrogen flow rates. Appl Surf Sci 169–170:353–357. doi: 10.1016/S0169-4332(00)00679-6 CrossRefGoogle Scholar
  10. Chung G-S (2007) Characteristics of tantalum nitride thin film strain gauges for harsh environments. Sens Actuators A Phys 135:355–359. doi: 10.1016/j.sna.2006.07.025 CrossRefGoogle Scholar
  11. Depla D, Li XY, Mahieu S, Gryse RD (2008) Determination of the effective electron emission yields of compound materials. J Phys D Appl Phys 41:202003. doi: 10.1088/0022-3727/41/20/202003 CrossRefGoogle Scholar
  12. Frisk K (1998) Analysis of the phase diagram and thermochemistry in the Ta–N and the Ta–C–N systems. J Alloys Compd 278:216–226. doi: 10.1016/S0925-8388(98)00582-9 CrossRefGoogle Scholar
  13. Gladczuk L, Patel A, Demaree JD, Sosnowski M (2005) Sputter deposition of bcc tantalum films with TaN underlayers for protection of steel. Thin Solid Films 476:295–302. doi: 10.1016/j.tsf.2004.10.020 CrossRefGoogle Scholar
  14. Grosser M, Schmid U (2009) The impact of sputter conditions on the microstructure and on the resistivity of tantalum thin films. Thin Solid Films 517:4493–4496. doi: 10.1016/j.tsf.2008.12.009 CrossRefGoogle Scholar
  15. Hieber K (1974) Structural and electrical properties of Ta and Ta nitrides deposited by chemical vapour deposition. Thin Solid Films 24:157–164. doi: 10.1016/0040-6090(74)90261-2 CrossRefGoogle Scholar
  16. Joint Committee on Powder Diffraction Standards (2002) The International Centre for Diffraction Data, Powder Diffraction FIles (2002) Campus Boulevard Newtown Square PA 19073-3273 USAGoogle Scholar
  17. Lovejoy ML, Patrizi GA, Roger DJ, Barbour JC (1996) Thin-film tantalum-nitride resistor technology for phosphide-based optoelectronics. Thin Solid Films 290–291:513–517. doi: 10.1016/S0040-6090(06)08966-8 CrossRefGoogle Scholar
  18. Lu YM, Weng RJ, Hwang WS, Yang YS (2001a) Electrical properties of TaxNy films by implementing OES in the sputtering system. Mater Chem Phys 72:278–280. doi: 10.1016/S0254-0584(01)00452-7 CrossRefGoogle Scholar
  19. Lu YM, Weng RJ, Hwang WS, Yang YS (2001b) Study of phase transition and electrical resistivity of tantalum nitride films prepared by DC magnetron sputtering with OES detection system. Thin Solid Films 398–399:356–360. doi: 10.1016/S0040-6090(01)01342-6
  20. Mientus R, Ellmer K (1999) Reactive DC magnetron sputtering of elemental targets in Ar/N2 mixtures: relation between the discharge characteristics and the heat of formation of the corresponding nitrides. Surf Coat Technol 116–119:1093–1101. doi: 10.1016/S0257-8972(99)00124-3 CrossRefGoogle Scholar
  21. Misina M., Shaginyan L. R., Macek M., Panjan P. (2001) Energy resolved ion mass spectroscopy of the plasma during reactive magnetron sputtering. Surf Coat Technol 142–144:348–354. doi: 10.1016/S0257-8972(01)01071-4
  22. Moon DW, Kim KJ, Park Y, Kim HK, Ha YH, Oh DH, Kang HJ (2000) Medium-energy ion scattering spectroscopy for quantitative surface and near-surface analysis of ultrathin films. Surf Interface Anal 30: 484–487. doi:  10.1002/1096-9918(200008)30:1<484::AID-SIA828>3.0.CO;2-U
  23. Riekkinen T, Molarius J, Laurila T, Nurmela A, Suni I, Kivilahti J (2002) Reactive sputter deposition and properties of TaxN thin films. Microelectron Eng 64:289–297. doi: 10.1016/S0167-9317(02)00801-8 CrossRefGoogle Scholar
  24. Schauer A, Roschy M (1972) R.F. sputtered beta-tantalum and b.c.c. tantalum films. Thin Solid Films 12:313–317. doi: 10.1016/0040-6090(72)90095-8
  25. Schauer A, Peters W, Juergens W (1971) A very pure thin film tantalum. Thin Solid Films 8:R9–R12. doi: 10.1016/0040-6090(71)90112-X Google Scholar
  26. Schroder DK (1998) Semiconductor material and device characterization. Wiley, New YorkGoogle Scholar
  27. Shin C-S, Kim Y-W, Gall D, Greene JE, Petrov I (2002) Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si(001) and MgO(001) by reactive magnetron sputter deposition. Thin Solid Films 402:172–182. doi: 10.1016/S0040-6090(01)01618-2 CrossRefGoogle Scholar
  28. Sun X, Kolawa E, Chen J-S, Reid JS, Nicolet M-A (1993) Properties of reactively sputter-deposited Ta-N thin films. Thin Solid Films 236:347–351. doi: 10.1016/0040-6090(93)90694-K CrossRefGoogle Scholar
  29. Thornton JA (1986) The microstructure of sputtered-deposited coatings. J Vac Sci Technol A 4:3059–3065. doi: 10.1116/1.573628 CrossRefGoogle Scholar
  30. Valleti K, Subrahmanyam A, Joshi SV, Phani AR, Passacantando M, Santucci S (2008) Studies on phase dependent mechanical properties of dc magnetron sputtered TaN thin films: evaluation of super hardness in orthorhombic Ta4 N phase. J Phys D Appl Phys 41:45409. doi: 10.1088/0022-3727/41/4/045409 CrossRefGoogle Scholar
  31. Wang Z, Yaegashi O, Sakaue H, Takahagi T, Shingubara S (2003) Suppression of native oxide growth in sputtered TaN films and its application to Cu electroless plating. J Appl Phys 94:4697–4701. doi: 10.1063/1.1609644 CrossRefGoogle Scholar
  32. Wei C-T, Shieh H-PPD (2006) Effects of processing variables on tantalum nitride by reactive-ion-assisted magnetron sputtering deposition. Jpn J Appl Phys 45:6405–6410. doi: 10.1143/JJAP.45.6405 CrossRefGoogle Scholar
  33. Westergård R, Bromark M, Larsson M, Hedenqvist P, Hogmark S (1997) Mechanical and tribological characterization of DC magnetron sputtered tantalum nitride thin films. Surf Coat Technol 97:779–784. doi: 10.1016/S0257-8972(97)00338-1 CrossRefGoogle Scholar
  34. Wieser E, Peikert M, Wenzel C, Schreiber J, Bartha JW, Bendjus B, Melov VV, Reuther H, Mucklich A, Adolphi B, Fischer D (2002) Improvement of Ta-based thin film barriers on copper by ion implantation of nitrogen and oxygen. Thin Solid Films 410:121–128. doi: 10.1016/S0040-6090(02)00273-0 CrossRefGoogle Scholar
  35. Wu YY, Kohn A, Eizenberg M (2004) Structures of ultra-thin atomic-layer-deposited TaNx films. J Appl Phys 95:6167–6174. doi: 10.1063/1.1711176 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Michaela Grosser
    • 1
    Email author
  • M. Münch
    • 1
  • J. Brenner
    • 2
  • M. Wilke
    • 3
  • H. Seidel
    • 1
  • C. Bienert
    • 4
  • A. Roosen
    • 4
  • U. Schmid
    • 5
  1. 1.Chair of Micromechanics, Microfluidics/Microactuators, Faculty of Natural Sciences and Technology IISaarland UniversitySaarbrueckenGermany
  2. 2.Austrian Center of Competence for TribologyWiener NeustadtAustria
  3. 3.MFPA WeimarIlmenauGermany
  4. 4.Friedrich-Alexander-University, Erlangen-NürnbergErlangenGermany
  5. 5.Department for Microsystems Technology, Institute of Sensor and Actuator SystemsVienna University of TechnologyViennaAustria

Personalised recommendations