Microsystem Technologies

, Volume 16, Issue 5, pp 777–786 | Cite as

A dynamical envelope model for vibratory gyroscopes

Technical Paper

Abstract

In this contribution, a method will be presented to derive an envelope model for vibratory gyroscopes capturing the essential “slow” dynamics (envelope) of the system. The methodology will be exemplarily carried out for a capacitive gyroscope with electrostatic actuators and sensors. The resulting envelope model can be utilized for both transient and steady state simulations with the advantage of a significantly increased simulation speed. Especially for the sensor design and optimization, where usually very complex mathematical models are used, efficient steady state simulations are of certain interest. Another great advantage of this approach is that the steady state solutions in terms of the envelope model are constant. Thus, for the controller design, a linearization of the nonlinear envelope model around the steady state solution yields a linear time-invariant system allowing for the application of the powerful methods known from linear control theory.

Notes

Acknowledgments

This work was funded by the German BMBF as part of the EURIPIDES project RESTLES (project no. V3EUR015).

References

  1. Alper S, Akin T (2001) A symmetric surface micromachined gyroscope with decoupled oscillation modes. In: The 11th international conference on solid-state sensors and actuators, Munich, pp 456–459Google Scholar
  2. Ayazi F, Zaman MF, Sharma A (2008) Vibrating gyroscopes. In: Gianchandani YB, Tabata O, Zappe H (eds) Comprehensive microsystems, vol 2. Elsevier, Amsterdam, pp 181–208Google Scholar
  3. Bernstein J, Cho S, King AT, Kourepenis A, Maciel P, Weinberg M (1993) A micromachincd comb-drive tuning fork rate gyroscopce. In: Proceedings MEMS, pp 143–148Google Scholar
  4. Bhave SA, Seeger JI, Jiang X, Boser BE, Howe RT, Yasaitis J (2003) An integrated vertical-drive, in-plane-sense microgyroscope. In: Digest of technical papers of the 12th international conference on solid-state sensors, sctuators and microsystems, Boston, pp 171–174Google Scholar
  5. Braxmaier M, Gaißer A, Link T, Schumacher A, Simon I, Frech J, Sandmaier H, Lang W (2003) Cross-coupling of the oscillation modes of vibratory gyroscopes. In: Digest of technical papers of the 12th international conference on solid-state sensors, actuators and microsystems, Boston, pp 167–170Google Scholar
  6. Caliskan VA, Verghese GC, Stankovic AM (1996) Multi-frequency averaging of DC/DC converters. In: IEEE workshop on computers in power electronics, Portland, pp 113–119Google Scholar
  7. Egretzberger M, Kugi A (2009) An envelope model to describe the sensor dynamics of vibratory gyroscopes. In: Proceedings of the SPIE, smart sensors, actuators and MEMS IV, Dresden, vol 7362Google Scholar
  8. Feldman P, Roychowdhury J (1996) Computation of circuit waveform envelopes using an effcient, matrix-decomposed harmonic balance algorithm. In: Digest of technical papers of the ICCAD, IEEE/ACM international conference, San Jose, pp 295–300Google Scholar
  9. Günthner S (2006) Entwurf und Charakterisierung von mikromechanischen Drehratensensoren in Silizium. In: Aktuelle Berichte aus der Mikrosystemtechnik, Shaker Verlag, AachenGoogle Scholar
  10. Günthner S, Egretzberger M, Kugi A, Kapser K, Hartmann B, Schmid U, Seidel H (2005) Compensation of parasitic effects for a silicon tuning fork gyroscope. IEEE Sens J 6:596–604CrossRefGoogle Scholar
  11. Juneau T, Pisano AP, Smith JH (1997) Dual axis operation of a micromachined rate gyroscope. In: The 9th international conference on solid-state sensors, actuators and microsystems, Chicago, vol 2, pp 883–886Google Scholar
  12. Kanso E, Szeri AJ, Pisano AP (2004) Cross-coupling errors of micromachined gyroscopes. J Micromech Syst 13:323–331CrossRefGoogle Scholar
  13. Kokotovic P, Khalil HK, O’Reilly J (1986) Singular perturbation methods in control: analysis and design. Academic Press, PhiladelphiaMATHGoogle Scholar
  14. Kuisma H, Ryhänen T, Lahdenperä J, Punkka E, Routsalainen S, Silanpää T, Seppä H (1997) A bulk micromachined angular rate sensor. In: The 9th international conference on solid-state sensors, actuators and microsystems, Chicago, pp 875–878Google Scholar
  15. Loveday PW, Rogers CA (2002) The influence of control system design on the performance of vibratory gyroscopes. J Sound Vib 255:417–432CrossRefMathSciNetGoogle Scholar
  16. Maenaka K, Fujita T, Konishi Y, Maeda M (1996) Analysis of a highly sensitive silicon gyroscope with cantilever beam as vibrating mass. Sens Actuators A 54:568–573CrossRefGoogle Scholar
  17. Mair F, Egretzberger M, Kugi A (2009) A tool for the automatic modeling of capacitive MEMS gyroscopes. In: Proceedings of the 6th Vienna international conference on mathematical modelling, Vienna, pp 2228–2235Google Scholar
  18. Merz P, Pilz W, Senger F, Reimer K, Grouchko M, Pandhumsoporn T, Bosch W, Cofer A, Lassig S (2007) Impact of Si DRIE on vibratory MEMS gyroscope performance. In: The 14th international conference on solid-state sensors, actuators and microsystems, Lyon, pp 1187–1190Google Scholar
  19. Piyabongkarn D, Rajamani R, Greminger M (2005) The development of a MEMS gyroscope for absolute angle measurement. IEEE Trans Control Syst Technol 13:185–195CrossRefGoogle Scholar
  20. Reid JG (1983) Linear system fundamentals. McGraw-Hill, New YorkGoogle Scholar
  21. Sassen S, Voss R, Schalk J, Stenzel E, Gleissner T, Grünberger R, Neubauer F, Ficker W, Kupke W, Bauer K, Rose M (2000) Tuning fork silicon angular rate sensor with enhanced performance for automotive applications. Sens Actuators A 83:80–84CrossRefGoogle Scholar
  22. Seeger JI, Boser BE (2003) Charge control of parallel-plate, electrostatic actuators and the tip-in instability. J Micromech Syst 12:656–671CrossRefGoogle Scholar
  23. Seshia AA, Howe RT, Montaguet S (2002) An integrated microelectromechanical resonant output gyroscope. In: The 15th IEEE international conference on micro electro mechanical systems, Las Vegas, pp 722–726Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Automation and Control Institute (ACIN)Vienna University of TechnologyViennaAustria

Personalised recommendations