Skip to main content
Log in

Microdroplet generation in gaseous and liquid environments

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

As trends in biology, chemistry, medicine and manufacturing have pushed macroscopic processes onto the micro scale, droplet generation has been a key factor in allowing these methods to translate. For both surface-based liquid-in-gas generation and lab-on-a-chip-based liquid-in-liquid generation, the ability to create small monodisperse liquid droplets is critically important in constructing reliable and practical devices. This article reviews liquid microdroplet generation in gaseous and liquid environments, covering the general characteristics of generators and the specific methods and technologies used for generation. Furthermore, this study compiles the issues encountered when operating generators, and the measurements and instrumentation used to characterize generated droplets. Applications of droplet generation in printing, analysis, synthesis and manufacturing are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. In this review, air will be the assumed gas in liquid-in-gas generators unless otherwise noted.

  2. Coefficient of variation (CV): ratio of the standard deviation to the mean.

  3. Potentially fluorescent molecules are tagged with a probe that can later be reacted with a fluorescently labeled affinity reaction.

References

  • Aderogba S, Meacham JM, Degertekin FL, Fedorov AG, Fernandez F (2005) Nanoelectrospray ion generation for high-throughput mass spectrometry using a micromachined ultrasonic ejector array. Appl Phys Lett 86:203110-1-3

    Google Scholar 

  • Amirzadeh Goghari A, Chandra S (2008) Producing droplets smaller than the nozzle diameter by using a pneumatic drop-on-demand droplet generator. Exp Fluids 44:105–114

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  • Baek SS, Choi B, Oh Y (2004) Design of a high-density thermal inkjet using heat transfer from CVD diamond. J Micromech Microeng 14:750–760

    Article  Google Scholar 

  • Ben-Tzvi P, Ben Mrad R, Goldenberg AA (2007) A conceptual design and FE analysis of a piezoceramic actuated dispensing system for microdrops generation in microarray applications. Mechatron 17:1–13

    Article  Google Scholar 

  • Berggren WT, Westphall MS, Smith LM (2002) Single-pulse nanoelectrospray ionization. Anal Chem 74:3443–3448

    Article  Google Scholar 

  • Bergkvist J, Lilliehorn T, Nilsson J, Johansson S, Laurell T (2005) Miniaturized flowthrough microdispenser with piezoceramic tripod actuation. J Microelectromech Syst 14:134–140

    Article  Google Scholar 

  • Bogy DB, Talke FE (1984) Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM J Res Dev 28:314–321

    Google Scholar 

  • Bransky A, Korin N, Khoury M, Levenberg S (2009) A microfluidic droplet generator based on a piezoelectric actuator. Lab Chip 9:516–520

    Article  Google Scholar 

  • Bruce CA (1976) Dependence of ink jet dynamics on fluid characteristics. IBM J Res Dev 20:258–270

    Google Scholar 

  • Brünahl J, Grishin AM (2002) Piezoelectric shear mode drop-on-demand inkjet actuator. Sens Actuators A Phys 101:371–382

    Article  Google Scholar 

  • Buehner WL, Hill JD, Williams TH, Woods JW (1977) Application of ink-jet technology to a word processing output printer. IBM J Res Dev 21:2–9

    Article  Google Scholar 

  • Cabal A, Ross DS, Lebens JA, Trauernicht DP (2005) Thermal actuator with optimized heater for liquid drop ejectors. Sens Actuators A Phys 123–124:531–539

    Google Scholar 

  • Castrejón-Pita JR, Martin GD, Hoath SD, Hutchings IM (2008) A simple large-scale droplet generator for studies of inkjet printing. Rev Sci Instrum 79:075108-1-8

    Google Scholar 

  • Chang S, Attinger D, Chiang FP, Zhao Y, Patel RC (2004) SIEM measurement of ultimate tensile strength and tensile modulus of jetted, UV-cured epoxy resin microsamples. Rapid Prototyp J 10:193–199

    Article  Google Scholar 

  • Chang TN, Parthasarathy S, Wang T, Gandhi K, Soteropoulos P (2006) Automated liquid dispensing pin for DNA microarray applications. IEEE Trans Autom Sci Eng 3:187–191

    Article  Google Scholar 

  • Chen AU, Basaran OA (2002) A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys Fluids 14:L1–L4

    Article  Google Scholar 

  • Cooley P, Wallace D, Antohe B (2001) Applications of ink-jet printing technology to bioMEMS and microfluidic systems. Proc SPIE Conf Microfluid BioMEMS 4560:177–188

    Google Scholar 

  • Dadvand A, Khoo BC, Shervani-Tabar MT (2009) A collapsing bubble-induced microinjector: an experimental study. Exp Fluids 46:419–434

    Article  Google Scholar 

  • De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16:203–213

    Article  Google Scholar 

  • De Heij B, Van Der Schoot B, Bo H, Hess J, De Rooij NF (2000) Characterization of a fL droplet generator for inhalation drug therapy. Sens Actuators A Phys 85:430–434

    Article  Google Scholar 

  • Demirci U, Yaralioglu GG, Hæggström E, Khuri-Yakub BT (2005) Femtoliter to picoliter droplet generation for organic polymer deposition using single reservoir ejector arrays. IEEE Trans Semiconduct Manuf 18:709–715

    Article  Google Scholar 

  • Dixon D (2004) Time pressure dispensing. In: White papers. Universal Instruments. http://www4.uic.com/wcms/WCMS2.nsf/index/Resources_58.html. Accessed 11 Sept 2009

  • Ederer I, Raetsch P, Schullerus W, Tille C, Zech U (1997) Piezoelectrically driven micropump for on-demand fuel-drop generation in an automobile heater with continuously adjustable power output. Sens Actuators A Phys 62:752–755

    Article  Google Scholar 

  • Ekström S, Önnerfjord P, Nilsson J, Bengtsson M, Laurell T, Marko-Varga G (2000) Integrated microanalytical technology enabling rapid and automated protein identification. Anal Chem 72:286–293

    Article  Google Scholar 

  • Elmqvist R (1951) Measuring instrument of the recording type. US patent 2,566,443

  • Endo I, Sato Y, Saito S, Nakagiri T, Ohno S (1979) Liquid jet recording process and apparatus therefor. UK patent 2,007,162

  • Erdem EY, Baskaran R, Böhringer KF (2008) Vibration induced droplet generation on textured surfaces. IEEE Int Conf MEMS 603–606

  • Fan KC, Chen JY, Wang CH, Pan WC (2008) Development of a drop-on-demand droplet generator for one-drop-fill technology. Sens Actuators A Phys 147:649–655

    Article  Google Scholar 

  • Forget M, O’Donnell M, Davies M (2008) Characterization of a liquid bridge microdroplet dispenser for use in molecular diagnosis. Proc Inst Mech Eng Part C J Mech Eng Sci 222:777–786

    Article  Google Scholar 

  • Fuller SB, Wilhelm EJ, Jacobson JM (2002) Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst 11:54–60

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  Google Scholar 

  • Govor LV, Parisi J, Bauer GH, Reiter G (2005) Instability and droplet formation in evaporating thin films of a binary solution. Phys Rev E 71:051603-1-9

    Google Scholar 

  • Gutmann O, Niekrawietz R, Steinert CP, Sandmaier H, Messner S, De Heij B, Daub M, Zengerle R (2003) Droplet release in a highly parallel, pressure driven nanoliter dispenser. In: International conference on solid-state sensors actuators and microsystem, 364–367

  • Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci USA 99:16531–16536

    Article  Google Scholar 

  • Hansen CL, Sommer MOA, Quake SR (2004) Systematic investigation of protein phase behavior with a microfluidic formulator. Proc Natl Acad Sci USA 101:14431–14436

    Article  Google Scholar 

  • Harada T, Ishikawa N, Kanda T, Suzumori K, Yamada Y, Sotowa KI (2008) Droplets generation by a torsional bolt-clamped Langevin-type transducer and micropore plate. In: Proceedings on IEEE international ultrasonics symposium, 627–630

  • He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544

    Article  Google Scholar 

  • Hebner TR, Wu CC, Marcy D, Lu HM, Strum JC (1998) Ink-jet printing of doped polymers for organic light emitting devices. Appl Phys Lett 72:519–521

    Article  Google Scholar 

  • Hirata S, Ishii Y, Matoba H, Inui T (1996) An ink-jet head using diaphragm microactuator. In: Proceedings of MEMS Workshop, 418–423

  • Hosseini Y, Ikram S, Kaler KVIS (2008) A CMOS optical feedback control for high-speed DEP based microfluidic actuation. Microsyst Nanoelectron Res Conf 137–140

  • Huang D, Kim ES (2001) Micromachined acoustic-wave liquid ejector. J Microelectromech Syst 10:442–449

    Article  Google Scholar 

  • Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, deMello AJ, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 1218–1220

  • Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6:174–178

    Article  Google Scholar 

  • Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126:2674–2675

    Article  Google Scholar 

  • Jaklevic JM, Garner HR, Miller GA (1999) Instrumentation for the genome project. Annu Rev Biomed Eng 1:649–678

    Article  Google Scholar 

  • Jones TB, Gunji M, Washizu M, Feldman MJ (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89:1441–1448

    Article  Google Scholar 

  • Kamisuki S, Hagata T, Tezuka C, Nose Y, Fujii M, Atobe M (1998) A low power, small, electrostatically driven commercial inkjet head. In: International workshop on MEMS, 63–68

  • Kamisuki S, Fujii M, Takekoshi T, Tezuka C, Atobe M (2000) A high resolution, electrostatically driven commercial inkjet head. In: International conference on MEMS, 793–798

  • Kanagasabapathi TT, Kaler KVIS (2007) Surface microfluidics—high-speed DEP liquid actuation on planar substrates and critical factors in reliable actuation. J Micromech Microeng 17:743–752

    Article  Google Scholar 

  • Kanda T, Ishikawa N, Suzumori K, Yoshizawa H, Yamada Y (2007) Droplets generation using micropore plate driven by Langevin type transducer. In: Proceedings of international congress on ultrasonics 1346:1–4

  • Kim KT, Park YW (2008) Feasibility of low-cost microarray printing with inkjet printer. In: International conference on control automation systems, 1932–1935

  • Kim SJ, Song YA, Skipper PL, Han J (2006) Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip. Anal Chem 78:8011–8019

    Article  Google Scholar 

  • Kim C, Lee KS, Lee IH, Shin KS, Kang E, Lee KJ, Kang JY (2007) Three dimensional perfusion culture of encapsulated embryonic stem cells in microfluidic chip. In: International solid-state sensors actuators microsystem conference, 1333–1334

  • Kim J, Byun D, Hong J, deMello AJ (2009) Droplets generation method for water-in-oil state in the polydimethylsiloxane microchannel with grooves. In: IEEE international conference on MEMS, 523–526

  • Koltay P, Birkenmeier B, Steger R, Sandmaier H, Zengerle R (2002) Massive parallel liquid dispensing in the nanoliter range by pneumatic actuation. In: International conference on new Actuators, 235–239

  • Köster S, Angilè FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115

    Article  Google Scholar 

  • Kyser EL, Sears SB (1976) Method and apparatus for recording with writing fluids and drop projection means therefor. US patent 3,946,398

  • Laurell T, Wallman L, Nilsson J (1999) Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling. J Micromech Microeng 9:369–376

    Article  Google Scholar 

  • Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42:49–62

    Google Scholar 

  • Lee ER (2003) Microdrop generation. CRC Press, Boca Raton

    Google Scholar 

  • Lee CH, Lal A (2004) Single microdroplet ejection using an ultrasonic longitudinal mode with a PZT/tapered glass capillary. IEEE Trans Ultrason Ferroelectr Freq Control 51:1514–1522

    Article  Google Scholar 

  • Lee YS, Kim MS, Shin SJ, Shin S, Kuk K, Sohn DK (2004) Lumped modeling of crosstalk behavior of thermal inkjet print heads. ASME Int Mech Eng Congr Expo 61413:1–8

    Google Scholar 

  • Lee TM, Kang TG, Yang JS, Jo JD, Kim KY, Choi BO, Kim DS (2007) 3D metal microstructure fabrication using a molten metal DoD inkjet system. In: International solid-state sensors actuators microsystem conference, 1637–1640

  • Lindemann T, Ashauer H, Yu Y, Sassano DS, Zengerle R, Koltay P (2007) One inch thermal bubble jet printhead with laser structured integrated polyimide nozzle plate. J Microelectromech Syst 16:420–428

    Article  Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503-1-4

    Google Scholar 

  • Liu K, Ding HJ, Liu J, Chen Y, Zhao XZ (2006) Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22:9453–9457

    Article  Google Scholar 

  • MacFarlane DL, Narayan V, Tatum JA DL, Cox WR, Chen T, Hayes DJ (1994) Microjet fabrication of microlens arrays. IEEE Photonics Technol Lett 6:1112–1114

    Article  Google Scholar 

  • Meacham JM, Varady MJ, Degertekin FL, Fedorov AG (2005) Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling. Phys Fluids 17:100605-1-8

    Google Scholar 

  • Miliotis T, Kjellström S, Nilsson J, Laurell T, Edholm LE, Marko-Varga G (2000) Capillary liquid chromatography interfaced to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an on-line coupled piezoelectric flow-through microdispenser. J Mass Spectrom 35:369–377

    Article  Google Scholar 

  • Moore SK (2001) Making chips to probe genes. IEEE Spectr 38:54–60

    Article  Google Scholar 

  • Nguon B, Jouaneh M (2004) Design and characterization of a precision fluid dispensing valve. Int J Adv Manuf Technol 24:251–260

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2:24–26

    Article  Google Scholar 

  • Orme M, Smith RF (2000) Enhanced aluminum properties by means of precise droplet deposition. ASME J Manuf Sci Eng 122:484–493

    Article  Google Scholar 

  • Orme M, Liu Q, Smith R (2000) Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications. Alum Trans J 3:95–103

    Google Scholar 

  • Ozen O, Aubry N, Papageorgiou DT, Petropoulos PG (2006) Monodisperse drop formation in square microchannels. Phys Rev Lett 96:144501-1-4

    Google Scholar 

  • Perçin G, Khuri-Yaku BT (2002) Micromachined droplet ejector arrays for controlled ink-jet printing and deposition. Rev Sci Instrum 73:2193–2196

    Article  Google Scholar 

  • Perçin G, Lundgren TS, Khuri-Yakub BT (1998) Controlled ink-jet printing and deposition of organic polymers and solid particles. Appl Phys Lett 73:2375–2377

    Article  Google Scholar 

  • Piracci AF (2000) Advantages of non-contact dispensing in SMT assembly processes. In: Articles & papers. Asymtek. http://www.asymtek.eu/news/articles/2000_09_smta_ate.pdf Accessed 11 Sept 2009

  • Rayleigh JWS (1878) On the instability of jets. Proc Lond Math Soc 10:4–13

    Article  Google Scholar 

  • Rose D (1999) Microdispensing technologies in drug discovery. Drug Discov Today 4:411–419

    Article  Google Scholar 

  • Roth CM, Yarmush ML (1999) Nucleic acid biotechnology. Annu Rev Biomed Eng 1:265–297

    Article  Google Scholar 

  • Samuel JDJS, Steger R, Birkle G, Zengerle R, Koltay P, Rühe J (2005) Modification of micronozzle surfaces using fluorinated polymeric nanofilms for enhanced dispensing of polar and nonpolar fluids. Anal Chem 77:6469–6474

    Article  Google Scholar 

  • Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 16:301–306

    Article  Google Scholar 

  • Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619

    Article  Google Scholar 

  • Song H, Tice JD, Ismagilov R (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed Engl 42:767–772

    Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507:145–150

    Article  Google Scholar 

  • Stachowiak JC, Richmond DL, Li TH, Liu AP, Parekh SH, Fletcher DA (2008) Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc Natl Acad Sci USA 105:4697–4702

    Article  Google Scholar 

  • Steger R, Koltay P, Birkle G, Strobelt T, Sandmaier H, Zengerle R (2002) Two-dimensional array of piezostack actuated nanoliter dispensers. In: International conference on new actuators, 537–541

  • Steinert CP, Goutier I, Gutmann O, Sandmaier H, Messner S, Daub M, De Heij B, Zengerle R (2003) An improved 24 channel picoliter dispenser based on direct liquid displacement. In: International conference on solid-state sensors actuators microsystems, 376–379

  • Sugiura S, Nakajima M, Iwamoto S, Seki S (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17:5562–5566

    Article  Google Scholar 

  • Sui G, Leu MC (2003) Investigation of layer thickness and surface roughness in rapid freeze prototyping. ASME J Manuf Sci Eng 125:556–563

    Article  Google Scholar 

  • Sweet RG (1965) High frequency recording with electrostatically deflected ink jets. Rev Sci Instrum 36:131–136

    Article  Google Scholar 

  • Switzer GL (1991) A versatile system for stable generation of uniform droplets. Rev Sci Instrum 62:2765–2771

    Article  Google Scholar 

  • Szczech JB, Megaridis CM, Gamota DR, Zhang J (2002) Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Trans Electron Packag Manuf 25:26–33

    Article  Google Scholar 

  • Takahashi S, Kitagawa H, Tomikawa Y (2002) A study of liquid dispensing head using fluidic inertia. Jpn J Appl Phys 41:3442–3445

    Article  Google Scholar 

  • Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    Article  Google Scholar 

  • Tan YC, Collins J, Lee AP (2003) Controlled fission of droplet emulsion in bifurcating microfluidic channels. In: International conference on solid-state sensors actuators microsystem, 28–31

  • Tan ZW, Teo SGG, Hu J (2008) Ultrasonic generation and rotation of a small droplet at the tip of a hypodermic needle. J Appl Phys 104:104902-1-5

    Google Scholar 

  • Tseng FG, Linder C, Kim CJ, Ho CM (1996) Control of mixing with micro injectors for combustion application. In: Proceedings of MEMS ASME IMECE, 183–197

  • Tseng FG, Kim CJ, Ho CM (1998) A microinjector free of satellite drops and characterization of the ejected droplets. Symp Appl Micro-Fabr Fluid Mech 89-95

  • Tseng FG, Kim CJ, Ho CM (1998) A novel microinjector with virtual chamber neck. In: Proceedings of international workshop on MEMS, 57–62

  • Tseng FG, Kim CJ, Ho CM (2002a) A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops—part i: concept, design, and model. J Microelectromech Syst 11:427–436

    Article  Google Scholar 

  • Tseng FG, Kim CJ, Ho CM (2002b) A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops—part ii: fabrication, implementation, and characterization. J Microelectromech Syst 11:437–447

    Article  Google Scholar 

  • Ulmke H, Wriedt T, Bauckhage K (2001) Piezoelectric droplet generator for the calibration of particle-sizing instruments. Chem Eng Technol 24:265–268

    Article  Google Scholar 

  • Vaught JL, Cloutier FL, Donald DK, Meyer JD, Tacklind CA, Taub HH (1984) Thermal ink jet printer. US patent 4,490,728

  • Ward T, Faivre M, Abkarian M, Stone HA (2005) Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 26:3716–3724

    Article  Google Scholar 

  • Wu H, Wheeler A, Zare RN (2004) Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc Natl Acad Sci USA 101:12809–12813

    Article  Google Scholar 

  • Wu HC, Lin HJ, Hwang WS (2005) A numerical study of the effect of operating parameters on drop formation in a squeeze mode inkjet device. Model Simul Mater Sci Eng 13:17–34

    Article  Google Scholar 

  • Wu L, Li GP, Xu W, Bachman M (2006) Droplet formation in microchannels under static conditions. Appl Phys Lett 89:144106-1-3

    Google Scholar 

  • Yuan S, Zhou Z, Wang G, Liu C (2003) MEMS-based piezoelectric array microjet. Microelectron Eng 66:767–772

    Article  Google Scholar 

  • Zhang M, Ma O, Diao X (2006) Dynamics modeling and analysis of inkjet technology-based oligo DNA microarray spotting. IEEE Trans Autom Sci Eng 3:159–168

    Article  Google Scholar 

  • Zhao YX, Li HX, Ding H, Xiong YL (2005) Integrated modelling of a time-pressure fluid dispensing system for electronics manufacturing. Int J Adv Manuf Technol 26:1–9

    Article  Google Scholar 

  • Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7:55–63

    Article  Google Scholar 

  • Zoltan SI (1972) Pulsed droplet ejecting system. US patent 3,683,212

Download references

Acknowledgments

This work is partly funded by the George Washington University Facilitating Fund/Dilthey grant # 111701.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinhas Ben-Tzvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Tzvi, P., Rone, W. Microdroplet generation in gaseous and liquid environments. Microsyst Technol 16, 333–356 (2010). https://doi.org/10.1007/s00542-009-0962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0962-7

Keywords

Navigation