Microsystem Technologies

, 15:1835 | Cite as

Miniaturization limits of piezoresistive MEMS accelerometers

  • Manuel Engesser
  • Axel R. Franke
  • Matthias Maute
  • Daniel C. Meisel
  • Jan G. Korvink
Technical Paper

Abstract

We present the miniaturization limits of axially loaded piezoresistive MEMS accelerometers. Therefore we identify limiting factors on the basis of FEM-verified analytical models. To ensure a broad discussion we compare two different axially loaded topologies: first a conventional topology, which can be manufactured already today, and second a future-oriented topology utilizing nanowires. To enable a realistic comparison of the different topologies we shrink the sensor while maintaining a specific performance (e.g. sensitivity and noise) considering design limitations such as fracture of silicon and buckling. To find the minimum total sensor area under certain constraints and therefore the optimal geometric and material parameters we apply optimization techniques to our analytical models. It will be seen that the piezoresistive transducer principle for MEMS accelerometers has a promising shrink potential with minimum total sensor dimensions as low as 150 × 150 × 10 μm3 achievable by use of currently available manufacturing processes.

References

  1. Amarasinghe R, Dao DV, Toriyama T, Sugiyama S (2007) Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. J Sens Actuators A Phys 134:310–320CrossRefGoogle Scholar
  2. Bao MH (2000) Handbook of sensors and actuators, volume 8: micro mechanical transducers. Elsevier, Amsterdam. ISBN 0-444-50558-XGoogle Scholar
  3. Boroch R, Wiaranowski J, Mueller-Fiedler R, Ebert M, Bagdahn J (2006) Characterization of strength properties of thin polycrystalline silicon films for MEMS applications. Fatigue Fracture Eng Mater Struct 30:2–12CrossRefGoogle Scholar
  4. Bosch Sensortec GmbH (2008) Data sheet BMA150 Digital, triaxial acceleration sensor. http://www.bosch-sensortec.com
  5. Chen H, Bao M, Zhu H, Shen S (1997) A piezoresistive accelerometer with a novel vertical beam structure. J Sens Actuators Phys A 63:19–25CrossRefGoogle Scholar
  6. Chen S, Xue C, Zhang W, Xiong J, Zhang B, Hu J (2008) A new type of MEMS two axis accelerometer based on Silicon. Proc Nano/Micro Eng Mol Syst 3:959–964Google Scholar
  7. Dao DV, Toriyama T, Sugiyama S (2004) Noise and frequency analyses of a miniaturized 3-DOF accelerometer utilizing silicon nanowire piezoresistors. Proc IEEE Sens 3:1464–1467Google Scholar
  8. Dong P, Wu X, Li S (2007) A high-performance monolithic triaxial high-g accelerometer. Proceedings of IEEE Sensors Conference, pp 768–771Google Scholar
  9. Engesser M, Franke AR, Maute M, Meisel DC, Korvink JG (2009) An optimization technique for area shrinking problems applied to MEMS accelerometers. Proceedings Smart Systems Integration, pp 111–118. ISBN 978-3-89838-616-6Google Scholar
  10. Gonzales P, Severi S, Lenci S, Merken P, Witvrouw A, Meyer KD (2008) Evaluation of piezoresistivity and 1/f noise of polycrystalline SiGe for MEMS sensor application. Proc Eurosens XXII:881–884Google Scholar
  11. Harley JA (2000) Advances in piezoresistive probes for atomic force microscopy. Dissertation at the department of Mechanical Engineering, Stanford UniversityGoogle Scholar
  12. Harley JA, Kenny TW (2000) 1/f noise considerations for the design and process optimization of piezoresistive cantilevers. J Microelectromech Syst 9:226–235CrossRefGoogle Scholar
  13. Hitachi Metals Ltd. (2008) Data sheet H34C 3-Axis Accelerometer with IC. http://www.hitachimetals.com/
  14. Hooge FN (1969) 1/F noise is no surface effect. J Phy Lett 29:139–140CrossRefGoogle Scholar
  15. Huang S, Li X, Wang Y, Jiao J, Ge X, Lu D, Che L, Zhang K, Xiong B (2003) A piezoresistive accelerometer with axially stressed tiny beams for both much increased sensitivity and much broadened frequency bandwidth. Conference on Solid State Sensors, Actuators and Microsystems 12:91–94Google Scholar
  16. Kanda Y (1982) A graphical representation of the piezoresistance coefficients of silicon. IEEE Trans Electron Devices 29:64–70CrossRefGoogle Scholar
  17. Kruglick EJJ, Warneke BA, Pister KSJ (1998) CMOS 3-axis accelerometers with integrated amplifier. Proc Micro Electro Mech Syst 11:631–636Google Scholar
  18. Okamura A, Dao DV, Toriyama T, Sugiyama S (2005) Fabrication of an ultra small accelerometer utilizing Si nanowire piezoresistors. Proc Sens Symp 22:203–206Google Scholar
  19. Park WT, Partridge A, Candler RN, Ayanoor-Vitikkate V, Yama G, Lutz M, Kenny TW (2006) Encapsulated submillimeter piezoresistive accelerometers. J Microelectromech Syst 15:507–514CrossRefGoogle Scholar
  20. Partridge A, Reynolds JK, Chui BW, Chow EM, Fitzgerald AM, Zhang L, Maluf NI, Kenny TW (2000) A high-performance planar piezoresistive accelerometer. J Microelectromech Syst 9:58–66CrossRefGoogle Scholar
  21. Roylance LM, Angell JB (1979) A batch-fabricated silicon accelerometer. IEEE Trans Electron Devices 12:1911–1917CrossRefGoogle Scholar
  22. Sandmaier H, Kuehl K, Obermeier E (1987) A silicon based microelectromechanical accelerometer with cross acceleration sensitivity compensation. Proc Transducers 4:399–402Google Scholar
  23. Sankar AR, Das S, Lahiri SK (2008) Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer. J Microsyst Technol 15:511–518CrossRefGoogle Scholar
  24. Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94:42–49CrossRefGoogle Scholar
  25. Spengen WM, Bakker E, Frenken JWM (2007) A ’nano-battering ram’ for measuring surface forces: obtaining force–distance curves and sidewall stiction data with a MEMS device. J Miromech Microeng 17:91–97CrossRefGoogle Scholar
  26. Tacano M, Pavelka J, Tanuma N, Yokokura S, Hashiguchi S (2004) Dependence of Hooge constant on mean free paths of materials. Proc SPIE 5469:310–319CrossRefGoogle Scholar
  27. Takao H, Fukumoto H, Ishida M (2001) A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachining. IEEE Trans Electron Devices 48:1961–1968CrossRefGoogle Scholar
  28. Thurber WR, Mattis RL, Liu YM, Filliben JJ (1980) Resistivity-dopant density relationship for boron-doped silicon. J Solid State Sci Tech 127:2291–2294Google Scholar
  29. Timpe SJ, Komvopoulos K (2005) An experimental study of sidewall adhesion in microelectromechanical systems. J Microelectromech Syst 14:1356–1363CrossRefGoogle Scholar
  30. Toriyama T, Tanimoto Y, Sugiyama S (2002) Single crystal silicon nano-wire piezoresistors for mechanical sensors. J Microelectromech Syst 11:605–611CrossRefGoogle Scholar
  31. Tran TD, Dao DV, Bui TT, Nguyen LT, Nguyen TP, Susumu S (2008) Optimum design considerations for a 3-DOF micro accelerometer using nanoscale piezoresistors. Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp 770–773Google Scholar
  32. Vandamme LKJ, Oosterhoff S (1986) Annealing of ion-implanted resistors reduces the 1/f noise. J Appl Phys 59:3169–3174CrossRefGoogle Scholar
  33. Wang Z, Yue R, Zhang R, Liu L (2005) Design and optimization of laminated piezoresistive microcantilever sensors. J Sens Actuators A Phys 120:325–336CrossRefGoogle Scholar
  34. Warneke B, Hoffman E, Pister KSJ (1995) Monolithic multiple axis accelerometer design in standard CMOS. Proc SPIE 2642:95–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Manuel Engesser
    • 1
  • Axel R. Franke
    • 1
  • Matthias Maute
    • 1
  • Daniel C. Meisel
    • 1
  • Jan G. Korvink
    • 2
  1. 1.Robert Bosch GmbHGerlingenGermany
  2. 2.Department of Microsystems Engineering (IMTEK) and Freiburg Institute of Advanced Studies (FRIAS)University of FreiburgFreiburgGermany

Personalised recommendations