Microsystem Technologies

, Volume 14, Issue 12, pp 2001–2005 | Cite as

Integrated simulation method for investment decisions of micro production systems

  • Bernd Scholz-Reiter
  • Michael Lütjen
  • Jens Heger
Technical Paper


From a production logistics point of view, micro production systems need special methods due to their special requirements and characteristics. In this paper a new approach for the assessment of different investment scenarios during the planning period with integrated cost simulation is presented. In particular, the use of single-purpose and multi-purpose machines and the cost effectiveness of function integration are examined. Thereby alternative machine pool configurations and optimal costs can be analysed, determined and taken into consideration for investment decisions.


Linear Solver Production Program Simultaneous Production Investment Planning Investment Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is funded by the German Research Foundation (DFG) as the Collaborative Research Centre 747 “Microforming” (SFB 747).


  1. Fang HL, Ross P, Corne D (1993) A promising genetic algorithm approach to job shop scheduling, rescheduling, and open-shop scheduling problems. In: Proceedings of fifth international conference on genetic algorithms, pp 375–382Google Scholar
  2. Götze U (2006) Investitionsvorhaben. Modelle und Analysen zur Beurteilung von Investitionsvorhaben, 4th edn. Springer, BerlinGoogle Scholar
  3. Gonzales JF, Magalhaes Mendes JJD, Resende M (2002) A hybrid genetic algorithm for the job shop scheduling problem, Technical report TD-5EAL6J, AT&T LabsGoogle Scholar
  4. Guttenberger S (2004) Investition. Merkur, RintelnGoogle Scholar
  5. Hesselbach J et al (2003) mikroPRO. Untersuchung zum internationalen Stand der Mikroproduktionstechnik. wt Werkstattstechnik online 93(3):119–128Google Scholar
  6. Hesselbach J (2004) Mikrotechnik—Mikroproduktion. Akademie Journal (1):4–11Google Scholar
  7. Hummeltenberg W, Preßmar DB (1989) Vergleich von Simulation und Mathematischer Optimierung an Beispielen der Produktions- und Ablaufplanung. OR Spektrum 11(4):217–229CrossRefGoogle Scholar
  8. Krutschwitz L (2000) Investitionsrechnung. 8th edn. Oldenbourg Wissenschaftsverlag GmbH, MünchenGoogle Scholar
  9. Nakano R (1991) Conventional genetic algorithm for job-shop problems. In: Proceedings of fourth international conference on genetic algorithms, pp 474–479Google Scholar
  10. Scholz-Reiter B, Lütjen M, Höhns H (2006) Die Bedeutung des Produktionscontrolling in der Mikrofertigung. Ind Manag 22(4):9–14Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bernd Scholz-Reiter
    • 1
  • Michael Lütjen
    • 1
  • Jens Heger
    • 1
  1. 1.Planning and Control of Production SystemsUniversity of BremenBremenGermany

Personalised recommendations