Microsystem Technologies

, 14:1789 | Cite as

Integrated process simulation of primary shaping: multi scale approaches

  • D. Kauzlarić
  • J. Lienemann
  • L. Pastewka
  • A. Greiner
  • J. G. Korvink
Technical Paper


We investigate simulation approaches for the modelling of the primary shaping processes micro powder injection moulding and micro casting. We could reproduce the segregation during micro powder injection moulding (MicroPIM) with a simulation using particle methods. The phase field method allows for accurate prediction of the dynamics of solidification of a melt, whereby model order reduction is used to limit the computational effort. The results give valuable advice for the process conduct and the dimensioning of the micro parts.


Smoothed particle hydrodynamics Fluid mechanics Micro powder injection moulding Micro casting 



The authors wish to express their gratitude to the Deutsche Forschungsgemeinschaft (DFG) for funding of this project in the framework of the Sonderforschungsbereich Mikrourformen (SFB499). Further, the authors thank Deep Gupta for his work with MICRESS.


  1. Anderson DM, McFadden GB, Wheeler AA (2000) A phase-field model of solidification with convection. Physica D 135(1–2):175–194MATHCrossRefMathSciNetGoogle Scholar
  2. Antoulas AC (2005) Approximation of large-scale dynamical systems, advances in design and control 6. SIAM, PhiladelphiaGoogle Scholar
  3. Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Rev Mater Res 32:163–194CrossRefGoogle Scholar
  4. Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comp Phys 148:227–264MATHCrossRefMathSciNetGoogle Scholar
  5. Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67:026705CrossRefGoogle Scholar
  6. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astr Soc 181:375–389MATHGoogle Scholar
  7. Grong Ø, Shercliff HR (2002) Microstructural modelling in metals processing. Prog Mater Sci 47(2):163–282CrossRefGoogle Scholar
  8. Hecht U, Granasy L, Pusztai T, Bottger B, Apel M, Witusiewicz V, et al. (2004) Multiphase solidification in multicomponent alloys. Mater Sci Eng: R: Reports 46(1–2):1–49CrossRefGoogle Scholar
  9. Hillert M, Staffansson LI (1970) Regular-solution model for stoichiometric phases and ionic melts. Acta Chem Scand 24(10):3618–3626CrossRefGoogle Scholar
  10. Kauzlaric D, Greiner A, Korvink J, Schulz M, Heldele R (2005) Modelling Micro-PIM. In: Baltes H, Oliver B, Fedder GK, Hierold C, Korvink JG, Tabata O (eds) Microengineering of metals and ceramics. Wiley-VCH, Weinheim, pp. 51–84CrossRefGoogle Scholar
  11. Kurz W, Fisher D (1989) Fundamentals of solidification, 3rd edn. Trans Tech Publ, Aedermannsdorf, SwitzerlandGoogle Scholar
  12. Lienemann J, Rudnyi EB, Korvink JG (2006) MST MEMS model order reduction: requirements and benchmarks. Linear Algebra Appl 415(2–3):469–498MATHCrossRefMathSciNetGoogle Scholar
  13. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024CrossRefGoogle Scholar
  14. Nielaba P, Mareschal M, Ciccotti G (eds) (2002) Bridging time scales: molecular simulations for the next decade, vol. 605. Springer, BerlinGoogle Scholar
  15. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids A 4(1):30–40MATHCrossRefGoogle Scholar
  16. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Engrg 139(1–4):375–408MATHCrossRefMathSciNetGoogle Scholar
  17. Rudnyi EB, Korvink JG (2002) Review: automatic model reduction for transient simulation of MEMS-based devices. Sensors Update 11(1):3–33CrossRefGoogle Scholar
  18. Silveira LM, Kamon M, White J (1996) Efficient reduced-order modeling of frequency-dependent coupling inductances associated with 3-D interconnect structures. IEEE T Compon Pack B 19(2):283–288Google Scholar
  19. Steinbach I, Pezzolla F, Nestler B, Seeßelberg M, Prieler R, Schmitz GJ, et al. (1996) A phase field concept for multiphase systems. Physica D 94(3):135–147MATHCrossRefGoogle Scholar
  20. Sundman B, Agren J (1981) A regular solution model for phases with several components and sublattices, suitable for computer applications. J Phys Chem Solids 42(4):297–301CrossRefGoogle Scholar
  21. Sundman B, Jansson B, Andersson JO (1985) The thermo-calc databank system. Calphad 9(2):153–190CrossRefGoogle Scholar
  22. Tiaden J, Nestler B, Diepers HJ, Steinbach I (1998) The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D 115(1–2):73–86MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • D. Kauzlarić
    • 1
  • J. Lienemann
    • 1
  • L. Pastewka
    • 2
  • A. Greiner
    • 1
  • J. G. Korvink
    • 1
  1. 1.Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
  2. 2.Fraunhofer Institute for Mechanics of MaterialsFreiburgGermany

Personalised recommendations