Advertisement

Microsystem Technologies

, Volume 14, Issue 9–11, pp 1715–1719 | Cite as

Submicron-scale surface acoustic wave resonators fabricated by high aspect ratio X-ray lithography and aluminum lift-off

  • Sven Achenbach
  • David Klymyshyn
  • Timo Mappes
  • Anton Kachayev
  • Venkat Subramanian
  • Garth Wells
  • Jürgen Mohr
Technical Paper

Abstract

A submicron-scale surface acoustic wave (SAW) resonator fabricated by high-aspect-ratio X-ray lithography (XRL) and metal lift-off that operates at microwave frequencies is presented. We demonstrate that XRL is especially well suited for SAW device templating, as long submicron-scale interdigitated transducer structures can be batch patterned with excellent structure quality. 0.4–2.0 μm thick PMMA layers were structured by X-ray lithography shadow projection using silicon nitride-based X-ray masks. Structures with a critical lateral feature size of down to 200–700 nm were processed. The polymer structures served as templates in a subsequent aluminum lift-off process. The metal electrodes were successfully tested as SAW resonators for high frequency applications, e.g. around 1.3 GHz, using calibrated 1-port RF wafer probing measurements. Compared with standard fabrication techniques, the high structure quality of submicron-scale polymer templates made of unusually thick PMMA layers offers additional possibilities to fabricate thicker metal transducers.

Keywords

PMMA Surface Acoustic Wave LiTaO3 Lithium Tantalate Interdigitated Transducer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achenbach S (2004) Deep sub micron high aspect ratio polymer structures produced by hard X-ray lithography. Microsys Technol 10(6–7):493–497. doi: 10.1007/s00542-004-0379-2 CrossRefGoogle Scholar
  2. Achenbach S, Mappes T, Fettig R, Kando J, Mohr J (2004a) Process conditions for the fabrication of sub-wavelength scale structures by X-ray lithography in pmma films. SPIE. In: Proceedings of photonics Europe 2004—photonic crystal materials and nanostructures, Strasbourg 5450:86–94. doi: 10.1117/12.546030
  3. Achenbach S, Mappes T, Mohr J (2004b) Structure quality of high aspect ratio sub micron polymer structures patterned at the electron storage ring ANKA. J Vac Sci Tech B 22(6):3196–3201. doi: 10.1116/1.1824910 CrossRefGoogle Scholar
  4. Länge K, Bläss G, Voight A, Götzen R, Rapp M (2006) Integration of a surface acoustic wave biosensor in a microfluidic polymer chip. Biosens Bioelectron 22(2):227–232CrossRefGoogle Scholar
  5. Mappes T, Achenbach S, Mohr J (2006) Hochauflösende Röntgenlithografie zur Herstellung polymerer Submikrometerstrukturen mit großem Aspektverhältnis. Wissenschaftliche Berichte, Forschungszentrum Karlsruhe, FZKA 7215Google Scholar
  6. Mappes T, Achenbach S, Mohr J (2007) X-Ray lithography for devices with high aspect ratio polymer submicron structures. Microelectronic engineering. In: Proceedings of 32nd international conference on micro- and nano-engineering’06. Barcelona 84:1235–1239. doi: 10.1016/j.mee.2007.01.154
  7. Weigel R, Morgan DP, Owens JM, Ballato A, Lakin KM, Hashimoto K, Ruppel CCW (2002) Microwave acoustic materials, devices and applications. IEEE Trans Microw Theory Tech 50(3):738–748CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sven Achenbach
    • 1
    • 2
    • 3
  • David Klymyshyn
    • 1
    • 3
  • Timo Mappes
    • 4
  • Anton Kachayev
    • 5
    • 3
  • Venkat Subramanian
    • 1
  • Garth Wells
    • 1
  • Jürgen Mohr
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Institut für Mikrostrukturtechnik (IMT)Forschungszentrum KarlsruheKarlsruheGermany
  3. 3.TRLabsSaskatoonCanada
  4. 4.Institut für Mikrostrukturtechnik (IMT)Universität KarlsruheKarlsruheGermany
  5. 5.Vecima NetworksSaskatoonCanada

Personalised recommendations