Microsystem Technologies

, Volume 14, Issue 6, pp 739–746 | Cite as

Micromachined SiO2 microcantilever for high sensitive moisture sensor

Technical Paper

Abstract

Ultra-sensitive and selective moisture sensors are needed in various industries for processing control or environmental monitoring. As an outstanding sensor platform, surface-stress sensing microcantilevers have potential application in moisture detection. To enlarge the deflection of the microcantilever under surface stress induced by specific reactions, a new SiO2 microcantilever is developed which features a much lower Young’s modulus than conventional Si or SiNx microcantilevers. For comparing SiO2 cantilever with Si cantilevers, a model of the cantilever sensor is given by using both analysis and simulation, resulting in good agreement with the experimental data. The results demonstrate the SiO2 cantilever can achieve a much higher sensitivity than the Si cantilever. In order to fabricate this device, a new fabrication process using isotropic combined with anisotropic dry etching to release the SiO2 microcantilever beam by ICP (Inductively Coupled Plasma) was developed and investigated. This new process not only obtains a high etch rate at 9.1 μm/min, but also provides good profile controllability, and a flexibility of device design. Attributed to the high sensitivity, a significant deflection amplitude of the surface modified SiO2 microcantilever was observed upon exposure to 1% relative humidity. The SiO2 cantilevers are promising for inexpensive and highly sensitive moisture detection.

References

  1. Aachboun S, Ranson P (1999) Deep anisotropic etching of silicon. J Vac Sci Technol A 17:2270–2273CrossRefGoogle Scholar
  2. Aachboun S, Ranson P, Hibert C, Boufnichel M (2000) Cryogenic etching of deep narrow trenches in silicon. J Vac Sci Technol A 18:1848–1852CrossRefGoogle Scholar
  3. Arshak KI, Twomey K (2002) Investigation into a novel humidity sensor operating at room temperature. Microelectron J 33:213–220CrossRefGoogle Scholar
  4. Bao MH (2000) Micro mechanical transducers. In: Middelhoek S (ed) Handbook of sensors and actuators. Elsevier, AmsterdamGoogle Scholar
  5. Barkauskas J (1997) Investigation of conductometric humidity sensors. Talanta 44:1107–1112CrossRefGoogle Scholar
  6. Belaubre P, Guirardel M, Garcia G (2003) Fabrication of biological microarrays using microcantilevers. Appl Phys Lett 82:3122–3124CrossRefGoogle Scholar
  7. Boisen A, Thaysen J, Jensenius H, Hansen O (2000) Environmental sensors based on micromachined cantilevers with integrated read-out. Ultramicroscopy 82:11–16CrossRefGoogle Scholar
  8. Chabot MD, Moreland J (2003) Micrometer-scale magnetometry of thin Ni–Fe films using ultra-sensitive microcantilevers. J Appl Phys 93:7897–7899CrossRefGoogle Scholar
  9. Chatzandroulis S, Tserepi A, Goustouridis D, Normand P, Tsoukalas D (2002) Fabrication of single crystal Si Cantilevers using a dry release process and application in a capacitive-type humidity sensor. Microelectron Eng 61–62:955–961CrossRefGoogle Scholar
  10. Chou KS, Lee TK, Liu FJ (1999) Sensing mechanism of a porous ceramic as humidity sensor. Sens Actuators B 56:106–111CrossRefGoogle Scholar
  11. Freund LB, Floro JA, Chason E (1999) Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl Phys Lett 74:1987–1989CrossRefGoogle Scholar
  12. Fritz J et al (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318CrossRefGoogle Scholar
  13. Hansen KM, Ji HF, Wu G, Datar R, Cote R, Majumadar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single nucleotide mismatches. Anal Chem 73(7):1567–1571CrossRefGoogle Scholar
  14. Ji HF, Thundat TG (2002) Trace Ca2+ microcantilever sensor. Biosens Bioelectron 17:337–343CrossRefGoogle Scholar
  15. Ji HF, Thundat TG, Dabestani R, Brown GM, Britt PF, Bonnesen PV (2001) Ultrasensitivity detection of CrO4 2− using a microcantilever sensor. Anal Chem 73:1572–1576CrossRefGoogle Scholar
  16. Kang U, Wise K (2000) A high-speed capacitive humidity sensor with on-chip thermal reset. IEEE Trans Electron Devices 47:702–710CrossRefGoogle Scholar
  17. Klein CA (2000) How accurate are Stoney’s equation and recent modifications. J Appl Phys 88:5487–5489CrossRefGoogle Scholar
  18. Laermer F, Schilp A (1996) Method of anisotropically etching silicon. US Patent, 5501893Google Scholar
  19. Laermer F, Schilp A, Funk K, Offenberg M (1999) Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications. In: Technical Digest MEMS’99, Florida, pp 211–216Google Scholar
  20. Nahar RK, Khanna VK (1998) Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor. Sens Actuators B 46:35–41CrossRefGoogle Scholar
  21. Oden PI, Datskos PG, Thundat T (1996) Uncooled infrared imaging using a Piezoresistive microcantilever. Appl Phys Lett 69:3277–3279CrossRefGoogle Scholar
  22. Quevy E, Parvais B, Raskin JP, Buchaillot L, Flander D, Collard D (2002) A modified Bosch-type process for precise surface micromachining of polysilicon. J Micromech Microeng 12:328–333CrossRefGoogle Scholar
  23. Quist F, Badia A (2003) Nanomechanical cantilever motion generated by a Surface-confined Redox Reaction. J Phys Chem B 107(39):10691–10695CrossRefGoogle Scholar
  24. Rittersma ZM (2002) Recent achievements in miniaturized humidity sensors—a review of transduction techniques. Sens Actuators A 96:196–210CrossRefGoogle Scholar
  25. Somani PR, Viswanath AK, Aiyer RC, Radhakrishnan S (2001) Charge transfer complex-forming dyes incorporated in solid polymer electrolyte for optical humidity sensing. Sens Actuators B 80:141–148CrossRefGoogle Scholar
  26. Tang Y, Fang J, Yan X, Ji HF (2004) Fabrication and characterization of SiO2 microcantilever for microsensor application. Sens Actuators B Chem 97:109–113CrossRefGoogle Scholar
  27. Thundat T, Oden PI, Warmack RJ (1997) Microcantilever sensors. Microscale Thermophys Eng 1:185–199CrossRefGoogle Scholar
  28. Wu G, Ji HF, Hansen K, Thundat T, Datar R, Cote R, Hagan MF, Chakraborty AK, Majumdar A (2001) Nanomechanical signatures of biomolecular recognition and interactions. Proc Natl Acad Sci USA 98:1560–1564CrossRefGoogle Scholar
  29. Xu X, Thundat TG, Brown GM, Ji HF (2002) Detection of Hg2+ using microcantilever sensors. Anal Chem 74:3611–3615CrossRefGoogle Scholar
  30. Zhang Y, Ren Q, Zhao YP (2004) Modelling analysis of surface stress on a rectangular cantilever beam. J Phys D Appl Phys 37:2140–2145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Qi Chen
    • 1
  • Ji Fang
    • 1
  • Hai-Feng Ji
    • 1
  • Kody Varahramyan
    • 1
  1. 1.Institute for MicromanufacturingLouisiana Tech UniversityRustonUSA

Personalised recommendations