Microsystem Technologies

, Volume 14, Issue 4–5, pp 607–614 | Cite as

Measurement of the pressure broadening coefficients of the oxygen A-band using a low cost, polarization stabilized, widely tunable vertical-cavity surface-emitting laser

  • Benjamin Scherer
  • Jürgen Wöllenstein
  • Matthias Weidemüller
  • Wenzel Salzmann
  • Johannes Michael Ostermann
  • Fernando Rinaldi
  • Rainer Michalzik
Technical Paper

Abstract

Vertical-cavity surface-emitting lasers (VCSELs) are used for oxygen monitoring via tunable diode laser spectroscopy at 760 nm wavelength. For the desired application, novel polarization-stable laser diodes based on AlGaAs were developed. We present measurements of the pressure-broadening coefficients of the electric dipole forbidden oxygen A-band b1 Σ+gX3 Σ+g transition at 760 nm. The time the pressure-broadening coefficients were determined with a temperature tuned VCSEL. Generally temperature tuning has the disadvantage of frequent mode-hops, but the advantage of a wider tuning range in comparison to current tuning. Because of special techniques of polarization stabilization with a combination of a dielectric surface grating and a surface relief the VCSELs have a mode hop-free tuning range of more than 7 nm and a sidemode suppression of more than 30 dB. This provides a low cost laser diode system with a wide tuning range, which enables the possibility of simultaneous measurement of temperature, pressure and oxygen concentration in air, high pressure measurements and also a higher accuracy of oxygen concentration measurements.

References

  1. Brown LR, Plymate C (2003) Experimental Line Parameters of the Oxygen A Band at 760 nm. J Mol Spectrosc 199:205–213Google Scholar
  2. Choquette KD, Leibenguth RE (1994) Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries. IEEE Photon Technol Lett 8(1):40–42CrossRefGoogle Scholar
  3. Choquette KD, Richie DA, Leibenguth RE (1994) Temperature dependence of gain-guided vertical-cavity surface-emitting laser polarization. Appl Phys Lett 64:2062–2064CrossRefGoogle Scholar
  4. Choquette KD, Schneider RP Jr., Lear KL, Leibenguth RE (1995) Gain-dependent polarization properties of Vertical-Cavity lasers. IEEE J Select Topics Quantum Electron 1:661–666CrossRefGoogle Scholar
  5. Miguel MS, Fang Q, Moloney JV (1995) Light- polarization dynamics in surface-emitting semiconductor lasers. Phys Rev A 56(1):1728–1739CrossRefGoogle Scholar
  6. Monti di Sopra F, Brunner M, Hövel R (2002) Polarization control in strained T-bar VCSELs. IEEE Photon Technol Lett 14(8):1034–1036CrossRefGoogle Scholar
  7. Nishiyama N, Mizutami A, Hatori N, Arai M, Koyama F, Iga K (1999) Lasing characteristics of InGaAs-GaAs polarization controlled vertical-cavity surface-emitting laser grown on GaAs (311)B substrate. IEEE J Select Topics Quantum Electron 5(3):530–536CrossRefGoogle Scholar
  8. Ostermann JM, Rinaldi F, Debernardi P, Michalzik R (2005) VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing. IEEE Photonics Technol Lett 17(11):2256–2258CrossRefGoogle Scholar
  9. Panajotov K, Ryvkin B, Danckaert J, Peeters M, Thienpont H, Veretennicoff I (1998) Polarization switching in VCSELs due to thermal lensing. IEEE Photon Technol Lett 10(1):6–8CrossRefGoogle Scholar
  10. Ryvkin B, Panajotov K, Georgievski A, Danckaert J, Peeters M, Verschaffelt G, Thienpont H, Veretennicoff I (1999) Effect of photonenergy-dependent loss and gain mechanisms on polarization switchinh in vertical-cavity surface-emitting semiconductor-lasers. J Opt Soc Am B 16:2106–2113CrossRefGoogle Scholar
  11. Unold HJ, Riedl MC, Michalzik R, Ebeling KJ (2002) Polarization control in VCSELs by elliptic surface etching. Electron Lett 38(2):77–78CrossRefGoogle Scholar
  12. van Doorn A, van Exter M, Woerdman J (1996) Tailoring the birefringence in a vertical-cavity semiconductor laser. Appl Phys Lett 69:3635–3637CrossRefGoogle Scholar
  13. van Exter M, van Doorn A, Woerdman J (1997) Electro-optic effect and birefringence in semiconductor vertical-cavity lasers. Phys Rev A 56:845–853CrossRefGoogle Scholar
  14. Wang J, Sanders ST, Jeffries JB, Hanson RK (2001) Oxygen measurements at high pressures with vertical cavity surface emitting lasers. Appl Phys B 72:127–135CrossRefGoogle Scholar
  15. Wilkinson CI, Woodhead J, Frost JEF, Roberts JS, Wilson R, Lewis MF (1999) Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal. IEEE Photon Technol Lett 11(2):155–157CrossRefGoogle Scholar
  16. Yang S, Canagaratna MR, Witonsky SK, Coy SL, Steinfeld JI, Field RW, Kachanov AA (2000) Intensity measurements and collision-broadening coefficients for the oxygen a band measured by intracavity laser absorption spectroscopy. J Mol Spectrosc 201:188–197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Benjamin Scherer
    • 1
  • Jürgen Wöllenstein
    • 1
  • Matthias Weidemüller
    • 2
  • Wenzel Salzmann
    • 2
  • Johannes Michael Ostermann
    • 3
  • Fernando Rinaldi
    • 3
  • Rainer Michalzik
    • 3
  1. 1.Fraunhofer Institute for Physical Measurement TechniquesFreiburgGermany
  2. 2.Institute of PhysicsAlbert-Ludwigs-UniversityFreiburgGermany
  3. 3.Institute of OptoelectronicUniversity UlmUlmGermany

Personalised recommendations