Advertisement

Microsystem Technologies

, Volume 14, Issue 4–5, pp 607–614 | Cite as

Measurement of the pressure broadening coefficients of the oxygen A-band using a low cost, polarization stabilized, widely tunable vertical-cavity surface-emitting laser

  • Benjamin Scherer
  • Jürgen Wöllenstein
  • Matthias Weidemüller
  • Wenzel Salzmann
  • Johannes Michael Ostermann
  • Fernando Rinaldi
  • Rainer Michalzik
Technical Paper

Abstract

Vertical-cavity surface-emitting lasers (VCSELs) are used for oxygen monitoring via tunable diode laser spectroscopy at 760 nm wavelength. For the desired application, novel polarization-stable laser diodes based on AlGaAs were developed. We present measurements of the pressure-broadening coefficients of the electric dipole forbidden oxygen A-band b 1 Σ + g X 3 Σ + g transition at 760 nm. The time the pressure-broadening coefficients were determined with a temperature tuned VCSEL. Generally temperature tuning has the disadvantage of frequent mode-hops, but the advantage of a wider tuning range in comparison to current tuning. Because of special techniques of polarization stabilization with a combination of a dielectric surface grating and a surface relief the VCSELs have a mode hop-free tuning range of more than 7 nm and a sidemode suppression of more than 30 dB. This provides a low cost laser diode system with a wide tuning range, which enables the possibility of simultaneous measurement of temperature, pressure and oxygen concentration in air, high pressure measurements and also a higher accuracy of oxygen concentration measurements.

Keywords

Absorption Line Rotational Quantum Number Collision Partner Wide Tuning Range Temperature Tuning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge Andreas Kürzinger, Sven Rademacher, Marcus Braun, Armin Lambrecht, and Susanne Hartwig for technical support.

References

  1. Brown LR, Plymate C (2003) Experimental Line Parameters of the Oxygen A Band at 760 nm. J Mol Spectrosc 199:205–213Google Scholar
  2. Choquette KD, Leibenguth RE (1994) Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries. IEEE Photon Technol Lett 8(1):40–42CrossRefGoogle Scholar
  3. Choquette KD, Richie DA, Leibenguth RE (1994) Temperature dependence of gain-guided vertical-cavity surface-emitting laser polarization. Appl Phys Lett 64:2062–2064CrossRefGoogle Scholar
  4. Choquette KD, Schneider RP Jr., Lear KL, Leibenguth RE (1995) Gain-dependent polarization properties of Vertical-Cavity lasers. IEEE J Select Topics Quantum Electron 1:661–666CrossRefGoogle Scholar
  5. Miguel MS, Fang Q, Moloney JV (1995) Light- polarization dynamics in surface-emitting semiconductor lasers. Phys Rev A 56(1):1728–1739CrossRefGoogle Scholar
  6. Monti di Sopra F, Brunner M, Hövel R (2002) Polarization control in strained T-bar VCSELs. IEEE Photon Technol Lett 14(8):1034–1036CrossRefGoogle Scholar
  7. Nishiyama N, Mizutami A, Hatori N, Arai M, Koyama F, Iga K (1999) Lasing characteristics of InGaAs-GaAs polarization controlled vertical-cavity surface-emitting laser grown on GaAs (311)B substrate. IEEE J Select Topics Quantum Electron 5(3):530–536CrossRefGoogle Scholar
  8. Ostermann JM, Rinaldi F, Debernardi P, Michalzik R (2005) VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing. IEEE Photonics Technol Lett 17(11):2256–2258CrossRefGoogle Scholar
  9. Panajotov K, Ryvkin B, Danckaert J, Peeters M, Thienpont H, Veretennicoff I (1998) Polarization switching in VCSELs due to thermal lensing. IEEE Photon Technol Lett 10(1):6–8CrossRefGoogle Scholar
  10. Ryvkin B, Panajotov K, Georgievski A, Danckaert J, Peeters M, Verschaffelt G, Thienpont H, Veretennicoff I (1999) Effect of photonenergy-dependent loss and gain mechanisms on polarization switchinh in vertical-cavity surface-emitting semiconductor-lasers. J Opt Soc Am B 16:2106–2113CrossRefGoogle Scholar
  11. Unold HJ, Riedl MC, Michalzik R, Ebeling KJ (2002) Polarization control in VCSELs by elliptic surface etching. Electron Lett 38(2):77–78CrossRefGoogle Scholar
  12. van Doorn A, van Exter M, Woerdman J (1996) Tailoring the birefringence in a vertical-cavity semiconductor laser. Appl Phys Lett 69:3635–3637CrossRefGoogle Scholar
  13. van Exter M, van Doorn A, Woerdman J (1997) Electro-optic effect and birefringence in semiconductor vertical-cavity lasers. Phys Rev A 56:845–853CrossRefGoogle Scholar
  14. Wang J, Sanders ST, Jeffries JB, Hanson RK (2001) Oxygen measurements at high pressures with vertical cavity surface emitting lasers. Appl Phys B 72:127–135CrossRefGoogle Scholar
  15. Wilkinson CI, Woodhead J, Frost JEF, Roberts JS, Wilson R, Lewis MF (1999) Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal. IEEE Photon Technol Lett 11(2):155–157CrossRefGoogle Scholar
  16. Yang S, Canagaratna MR, Witonsky SK, Coy SL, Steinfeld JI, Field RW, Kachanov AA (2000) Intensity measurements and collision-broadening coefficients for the oxygen a band measured by intracavity laser absorption spectroscopy. J Mol Spectrosc 201:188–197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Benjamin Scherer
    • 1
  • Jürgen Wöllenstein
    • 1
  • Matthias Weidemüller
    • 2
  • Wenzel Salzmann
    • 2
  • Johannes Michael Ostermann
    • 3
  • Fernando Rinaldi
    • 3
  • Rainer Michalzik
    • 3
  1. 1.Fraunhofer Institute for Physical Measurement TechniquesFreiburgGermany
  2. 2.Institute of PhysicsAlbert-Ludwigs-UniversityFreiburgGermany
  3. 3.Institute of OptoelectronicUniversity UlmUlmGermany

Personalised recommendations