Microsystem Technologies

, Volume 13, Issue 11–12, pp 1483–1487

High quality factor copper inductors integrated in deep dry-etched quartz substrates

  • C. Leroy
  • M. B. Pisani
  • C. Hibert
  • D. Bouvet
  • M. Puech
  • A. M. Ionescu
Technical Paper

Abstract

This paper reports on an inductor fabrication method capable to deliver high quality factor (Q) and high self-resonance frequency (SRF) devices using quartz insulating substrates and thick high-conductivity copper lines. Inductors are key devices in RF circuits that, when fabricated on traditional semiconductor substrates, suffer from poor RF performances due to thin metallization and substrate related losses. Many previous works revealed that RF performances are strongly dependent on the limited metallization thickness and on the conductivity of the substrate. In this paper we demonstrate a new fabrication process to improve the Q factor of spiral inductors by patterning thick high conductive metal layers directly in a dielectric substrate. Moreover, we develop and validate accurate equivalent circuit modeling and parameter extraction for the characterization of the fabricated devices.

References

  1. Bahl I (2003) Lumped elements for RF and microwave circuits. Artech House, BostonGoogle Scholar
  2. Carchon GJ, de Raedt W, Beyne E (2004) Wafer-level packaging technology for high-Q on-chip inductors and transmission lines. IEEE Trans Microw Theory Tech 52:1244–1251CrossRefGoogle Scholar
  3. Kim BK, Ko BK, Lee KK (1995) Monolithic planar RF inductor and waveguide structures on silicon with performance comparable to those in GaAs MMIC. IEDM Tech Digest pp 717–720Google Scholar
  4. Lakdawala H, Zhu X, Luo H, Santahannan S, Carley LR, Fedder GK (2002) Micromachined high-Q inductors in a 0.18-μm copper interconnect low-k dielectric CMOS process. IEEE J Solid State Circuits 37:394–403CrossRefGoogle Scholar
  5. Mohan SS, M.M. Hershenson MM, S.P. Boyd SP, T.H. Lee TH (1999) Simple accurate expression for planar spiral inductances. IEEE J Solid State Circuits 34:1419–1424CrossRefGoogle Scholar
  6. Ozgur M, Zaghloul M, Gaitan M (1999) High Q backside Micromachined CMOS inductors. IEEE Int Symp Circuits Syst 2:577–580Google Scholar
  7. Pavius M, Hibert C, Flückiger P, Renaud P (2004) Profile angle control in SiO2 deep anisotropic dry etching for MEMS fabrication. In: Proceedings of MEMS 2004, pp 669–672Google Scholar
  8. Pisani MB, Hibert C, Bouvet D, Beaud P, Ionescu AM (2004) Copper/polyimide fabrication process for above-IC integration of high quality factor inductors. Microelectron Eng 73–74:474–479CrossRefGoogle Scholar
  9. Reyes AC, El-Ghazaly SM, Dorn S, Dydyk M, Schroder DK, Patterson H (1996) High-resistivity silicon as a microwave substrate. In: Proceedings of electronic components and technology conference, pp 382–391Google Scholar
  10. Yoon JB, Kim BK, Han CH, Yoon E, Kim CK (1999) Surface micromachining solenoid on-Si and on-glass inductors for RF applications. IEEE Electron Devices Lett 20(9):487–489CrossRefGoogle Scholar
  11. Yue CP, Wong SS (2000) Physical modeling of spiral inductors on silicon. IEEE Trans Electron Devices 47:560–568CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • C. Leroy
    • 1
  • M. B. Pisani
    • 1
    • 2
  • C. Hibert
    • 2
  • D. Bouvet
    • 1
  • M. Puech
    • 3
  • A. M. Ionescu
    • 1
  1. 1.Electronics Laboratory (LEG)Institute of Microelectronics and Microsystems (IMM), Ecole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Center of Micro and Nanotechnology (CMI)Institute of Microelectronics and Microsystems (IMM), Ecole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Alcatel Vacuum TechnologyAnnecyFrance

Personalised recommendations