Microsystem Technologies

, Volume 12, Issue 12, pp 1143–1151 | Cite as

Low voltage actuated RF micromechanical switches fabricated using CMOS-MEMS technique

Technical Paper


This study investigates the fabrication of radio frequency (RF) micromechanical switches with low actuation voltage using the commercial 0.35 μm double polysilicon four metal (DPFM) complementary metal oxide semiconductor (CMOS) process and the post-process. The advantages of RF micromechanical switches include low pull-down voltage and ease of post-processing. Three types of RF micromechanical switches are designed and manufactured. The RF switches are capacitive type, and the structures of the switches comprise coplanar waveguide (CPW) transmission lines, supported springs and a suspended membrane. The post-process requires only a wet etching silicon dioxide layer. Experimental results show that type-c switch needs only a pull-down voltage of 7 V.


Micromechanical switches CMOS Post-process 



The authors would like to thank National Center for High-performance Computing (NCHC) for chip simulation, National Chip Implementation Center (CIC) for chip fabrication and the National Science Council of the Republic of China for financially supporting this research under Contract No NSC 94-2212-E-005-001.


  1. Batles H, Brand O, Hierlemann A, Lange D, Hagleitner C (2002) CMOS MEMS-present and future. In: IEEE international conference micro electro mechanical systems, pp 459–466Google Scholar
  2. Chang C, Dai CL, Chen JY, Chen H, Yen K, Chiou JH, Chang PZ (2000) Wideband electrostatic microwave switch fabricated by surface micromachining. J Chin Inst Eng 23:781–787Google Scholar
  3. Chang HP, Qian J, Cetiner BA, Bachman M, De Flaviis F, Li GP (2003) RF MEMS switch fabricated on micro-laminate printed circuit boards. IEEE Electron Device Lett 24:227–229CrossRefGoogle Scholar
  4. Chen JY, Li IY, Huang LS, Kuo YH, Chu CH, Chang PZ (2001) A assembly-transferred microware switch with suspended CMOS-compatile coplanar waveguides. In: ASME international mechanical engineering congress and exposition, pp 65–69Google Scholar
  5. Cheng YC, CL Dai CY Lee, Chen PH, Chang PZ (2005) A circular micromirror array fabricated by a maskless post-CMOS process. Microsyst technol 11:444–451CrossRefGoogle Scholar
  6. Dai CL, Tsai CH (2005) Fabrication of integrated chip with microinductors and micro-tunable capacitors by complementary metal-oxide-semiconductor postprocess. Jpn J Appl Phys 44:2030–2036CrossRefGoogle Scholar
  7. Dai CL, Chiou JH, Lu MSC (2005a) A maskless post-CMOS bulk micromachining process and its application. J Micromech Microeng 15:2366–2371CrossRefGoogle Scholar
  8. Dai CL, Peng HJ, Liu MC, Wu CC, Hsu HM, Yang LJ (2005b) A micromachined microware switch fabricated by the complementary metal oxide semiconductor post-process of etching silicon dioxide. Jpn J Appl Phys 44:6804–6809CrossRefGoogle Scholar
  9. Firebaugh SL, Charies HK, Edwards RL, Keeney AC, Wilderson SF (2004) Fabrication and characterization of a capacitive micromachined shunt switch. J Vac Sci Technol Vac Surf Films 22:1383–1387CrossRefGoogle Scholar
  10. Goldsmith C, Randall J, Eshelman S, Lin TH, Denniston D, Chen S, Norvell B (1996) Characteristics of micromachined switches at microwave frequencies. In: IEEE MTT-S international microwave symposium digest, pp 1141–1144Google Scholar
  11. Hah D, Yoon E, Hong S (2000) Low voltage actuated micromachined microwave switch using torsion sprong and leverage. In: IEEE MTT-S international microware symposium digest, pp 157–160Google Scholar
  12. Hyman D, Schmitz A, Warneke B, Hsu TY, Lam J, Brown J, Schaffner J, Walston A, Loo RY, Tangonan GL, Mehregany M, Lee J (1999) GaAs-compatible surface-micromachined RF MEMS switch. Electron Lett 35:224–226CrossRefGoogle Scholar
  13. Lou H, Zhu X, Lakdawala H, Carley LR, Fedder GK (2002) A copper CMOS-MEMS Z-axis gyroscope. In: IEEE international conference micro electro mechanical systems, pp 631–634Google Scholar
  14. Nguyen CTC, Katehi LPB, Rebeiz GM (1998) Micromachined devices for wireless communication. Pro IEEE 86:1756–1768CrossRefGoogle Scholar
  15. Park JY, Kim GH, Chung KW, Bu JU (2000) Fully integrated micromachaned capacitive switches for RG application. In: IEEE MTT-S international microware symposium digest, pp 283–286Google Scholar
  16. Plotz F, Michaeils S, Aigner R, Timme HJ, Binder J, Noe R (2001) A low-voltage torsional actuator for application in RF-microswitches. Sens Actuator 92:312–317CrossRefGoogle Scholar
  17. Ramadoss R, Lee S, Lee YC, Bright VM, Gupta KC (2003) Fibication, assembly, and testing of RF MEMS capacitive switches using flexible printed circuit technology. IEEE Trans Adv Packaging 26:248–254CrossRefGoogle Scholar
  18. Rebeiz GM, Muldavin JB (2001) RF MEMS switches and switch circuits. IEEE microwave Mag 2:59–71CrossRefGoogle Scholar
  19. Yao JJ (2000) RF MEMS from a device perspective. J Micromech Microeng 10:R9–R38CrossRefGoogle Scholar
  20. Yao ZJ, Chen S, Eshelman S, Denniston D, Goldsmith C (1999) Micromachined lo-loss microwave switches. J Microelectromech Syst 8:129–134CrossRefGoogle Scholar
  21. Zheng WB, Huang QA, Liao XP, Li FX (2005) RF MEMS Membrane switches on GaAs sustrate for x-band application. J Microelectromech Syst 14:464–471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Chung Hsing UniversityTaichungTaiwan, R.O.C.

Personalised recommendations