Advertisement

Microsystem Technologies

, Volume 13, Issue 2, pp 153–159 | Cite as

Electrical properties and crystallization behavior of Sb x Se100−x thin films

  • M. J. Kang
  • T. J. Park
  • D. Wamwangi
  • K. Wang
  • C. Steimer
  • S. Y. Choi
  • M. WuttigEmail author
Technical Paper

Abstract

The structural transformation and transformation kinetics of Sb x Se100−x films (60 ≤ x ≤ 70) were studied to investigate the feasibility of applying Sb x Se100−x alloys in phase-change nonvolatile memories. The temperature-dependent van der Pauw measurements, Hall measurements, X-ray diffraction and a static tester were used to investigate the electrical properties and crystallization behavior of the Sb x Se100−x films. The sheet resistance difference between amorphous and crystalline state was higher than 104 Ω per square According to Hall measurement, Sb x Se100−x films have p-type conduction and the Hall mobility and carrier concentration increases with the increase in Sb content. The crystalline structure of the metastable phase of Sb x Se100−x alloys, which plays a major roll in fast crystallization, is similar to that of Sb2Te (rhombohedral structure). The transition temperature, sheet resistance and activation energy for transformation decrease as the amount of Sb increases in the Sb x Se100−x film. Applying the Kissinger method, the activation energies for crystallization were in the range from 1.90 ± 0.15 to 4.16 ± 0.28 eV. The desired crystallization speed can be obtained by a systematic change of the composition owing to the variation of the activation barrier with stoichiometry.

Keywords

Sheet Resistance Phase Change Material Hall Mobility Sb2Se3 Carrier Concentration Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The one of the authors, M. J. Kang, would like to thank the Korea Science and Engineering Foundation (KOSEF) for a fellowship to carry out this research work at the I. Physikalisches Institut der RWTH Aachen, Germany.

References

  1. Babeva Tz, Dimitrov D, Kitova S, Konstantinov I (2000) Optical properties of phase-change optical disks with SbxSe100−x films. Vacuum 58:496–501CrossRefGoogle Scholar
  2. Barton R, Davis CR, Rubin K, Lim G (1986) New phase change materials for optical recording with short erase time. Appl Phys Lett 48:1255–1257CrossRefGoogle Scholar
  3. Dimitrov D, Ollacarizqueta MA, Afonso CN, Starbov N (1996) Crystallization kinetics of SbxSe100−x thin films. Thin Solid Films 280:278–283CrossRefGoogle Scholar
  4. El-Wahabb EA, Fouad SS, Fadel M (2003) Theoretical and experimental study of the conduction mechanism in Sb2Se3 alloy. J Mater Sci 38:527–532CrossRefGoogle Scholar
  5. Fouad SS, Ammar AH, Abo-Ghajala M (1997) The relationship between optical gap and chemical composition in SbxSe1−x system. Physica B 229:249–255CrossRefGoogle Scholar
  6. Fujimori S, Yagi S, Yamazaki H, Funakoshi N (1988) Crystallization process of Sb–Te alloy films for optical storage. J Appl Phys 64:1000–1004CrossRefGoogle Scholar
  7. Ghosh G (1993) Sb–Se (Antimony–Selenium). J Phase Equilib 14Google Scholar
  8. Ha YH, Yi JH, Horii H, Park JH, Joo SH, Park SO, Chung UI, Moon JT (2003) An edge contact type cell for phase change RAM featuring very low power consumption. Symposium VLSI Tech Dig:175–176Google Scholar
  9. Horii H, Yi JH, Park JH, Ha YH, Baek IG; Park SO, Hwang YN, Lee SH, Kim YT, Lee KH, Chung UI, Moon JT (2003) A novel cell technology using N-doped GeSbTe films for phase change RAM. Symposium VLSI Tech Dig:177–178Google Scholar
  10. Hosaka S, Miyauchi K, Tamura T, Sone H, Koyanagi H (2004) Proposal for a memory transistor using phase-change and nanosize effects. Microelectron Eng 73–74:736–740CrossRefGoogle Scholar
  11. Imamov PM, Semiletov SA (1971) Sov Phys Crystallogr 15:845–850Google Scholar
  12. Kim JH (1999) Correlation between microstructure and optical properties of Ge2Sb2Te5 thin films. J Appl Phys 86:6770–6772CrossRefGoogle Scholar
  13. Lai S (2003) Current status of the phase change memory and its future. IEDM Tech Dig:255–258 Google Scholar
  14. Lai S, Lowrey T (2001) OUM—A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. IEMD Tech Dig:803–806Google Scholar
  15. Maimon JD, Spall E, Quinn R, Schnur S (2001) Chalcogenide-based non-volatile memory technology. In: Proceedings IEEE aerospace conference:2289–2294Google Scholar
  16. Maimon JD, Hunt KK, Burcin L, Rodgers J (2003) Chalcogenide memory arrays: characterization and radiation effects. IEEE Trans Nucl Sci 50:1878–1884CrossRefGoogle Scholar
  17. Ohshima N (1996) Crystallization of germanium–antimony–tellurium amorphous thin film sandwiched between various dielectric protective films. J Appl Phys 79:8357–8363CrossRefGoogle Scholar
  18. Park J, Kim MR, Choi WS, Seo H, Yeon C (1999) Characterization of amorphous phases of Ge2Sb2Te5 phase-change optical recording material on their crystallization behavior. Jpn J Appl Phys 38:4775–4779CrossRefGoogle Scholar
  19. Tominaga J, Nakano T, Atoda N (1998) Double optical phase transition of GeSbTe thin films sandwiched between two SiN layers. Jpn J Appl Phys 37:1852–1854CrossRefGoogle Scholar
  20. Weidenhof V, Friedrich I, Ziegler S, Wuttig M (1999) Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5. J Appl Phys 86:5879–5887CrossRefGoogle Scholar
  21. Weidenhof V, Pirch N, Friedrich I, Ziegler S, Wuttig M (2000) Minimum time for laser induced amorphization of Ge2Sb2Te5 films. J Appl Phys 88:657–664CrossRefGoogle Scholar
  22. Wöltgens HW (2003) Combinatorial material synthesis applied to Ge–b–Te based phase-change materials. PhD thesis, RWTH Aachen GermanyGoogle Scholar
  23. Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M (1991) Rapid phase transitions of GeTe–Sb2Te3 pseudobinary amorphous thin films for optical disk memory. J Appl Phys 69:2849–2856CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. J. Kang
    • 1
    • 2
  • T. J. Park
    • 1
  • D. Wamwangi
    • 2
  • K. Wang
    • 2
  • C. Steimer
    • 2
  • S. Y. Choi
    • 1
  • M. Wuttig
    • 2
    Email author
  1. 1.Optical·Information Materials Research Laboratory (OIMRL), School of New Materials Science and EngineeringYonsei UniversitySeoulKorea
  2. 2.I. Physikalisches Institut der RWTH Aachen, Lehrstuhl für Physik neuer MaterialienAachenGermany

Personalised recommendations