Microsystem Technologies

, Volume 12, Issue 10–11, pp 941–946 | Cite as

Micro powder injection molding: process characterization and modeling

  • Richard Heldele
  • Michael Schulz
  • David Kauzlaric
  • Jan G. Korvink
  • Jürgen Haußelt
Technical paper

Abstract

The development of a new simulation tool for micro powder injection molding (MicroPIM) needs experimental material data and verification experiments to describe the process correctly. A new and innovative approach is to use dissipative particle dynamics (DPD) to describe the form filling process with respect to the interactions on a mesoscopic scale (Hoogerbrugge and Koelman in Europhys Lett 19(1):155–160, 1992). The individual parameters that enter DPD modeling of this process have to be adjusted using specially designed experiments for the injection molding process. The material properties in the standard injection molding process are primarily determined by the bulk material. In micro dimensions surface effects begin to dominate because of the large surface to volume ratio. Therefore, the surface interactions between feedstock and mold insert were studied. Finally, first observations of the injection molding experiments are shown and qualitatively compared to DPD simulation results.

References

  1. Beret S, Prausnitz JM (1975) Densities of liquid polymers at high pressure. Pressure volume temperature measurements for polyethylene, polyisobutylene, poly (vinyl acetate), and poly(dimethylsiloxane) to 1 kbar. Macromolecules 8(4):536–538CrossRefGoogle Scholar
  2. Bilovol VV, Kowalsky L, Dusczyk J, Katgerman L (2001) Comparative study of different simulation programs for modelling of powder injection Moulding. In: Proceedings of the European congress on powder metallurgy, vol 44(3), pp 129–134Google Scholar
  3. Boek ES, Coveney PV, Lekkerkerker HNW, van der Schoot P (1997) Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Phys Rev E 55:312–314CrossRefGoogle Scholar
  4. Cho J, Sanchez IC (1999) PVT relationships and equations of state of polymers. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley, New York, pp 591–601Google Scholar
  5. Dzwinel W, Yuen DA, Boryczko K (2002) Mesoscopic modeling of colloids simulated with dissipative particle dynamics. J Mol Model 8:33–43CrossRefGoogle Scholar
  6. Español P (1995) Hydrodynamics from dissipative particle dynamics. Phys Rev E 52:17–34CrossRefGoogle Scholar
  7. Español P (1996) Dissipative particle dynamics for a harmonic chain: a first principles derivation. Phys Rev E 53:1572–1578Google Scholar
  8. Español P, Serrano M, Zuñiga I (1997) Coarse graining of a fluid and its relation with dissipative particle dynamics and smoothed particle dynamics. Int J Modern Phys C 8:899–908CrossRefGoogle Scholar
  9. Flekkoy EG, Coveney PV (1999) From molecular dynamics to dissipative particle dynamics. Phys Rev Lett 83:1775–1778CrossRefGoogle Scholar
  10. Flekkoy EG, Coveney PV, de Fabritiis G (2000) Foundations of dissipative particle dynamics. Phys Rev E 62:21–40CrossRefGoogle Scholar
  11. Giridharan MG et al (2001) Multidisciplinary CAD system for MEMS. J Model Simulat Microsyst 2:43–50Google Scholar
  12. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435CrossRefGoogle Scholar
  13. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(1):155–160CrossRefGoogle Scholar
  14. Marsh CA, Yeomans JM (1997) Dissipative particle dynamics: the equilibrium for finite time steps. Europhys Lett 37:511–516CrossRefGoogle Scholar
  15. Marsh CA, Backx G, Ernst MH (1997) Static and dynamic properties of dissipative particle dynamics. Phys Rev E 56:1676CrossRefGoogle Scholar
  16. Masters AJ, Warren PB (1999) Kinetic theory for dissipative particle dynamics: the importance of collisions. Europhys Lett 48:1–7CrossRefGoogle Scholar
  17. McKinney JE, Simha R (1997) Configurational thermodynamic properties of polymer liquids and glasses. I. Poly(viny1 acetate). Macromolecules 7(6):894–901CrossRefGoogle Scholar
  18. Nieminen Risto M (2000) From atomistic simulation towards multiscale modeling of materials. J Phys Condens Matter 14:2859–2876CrossRefGoogle Scholar
  19. Westin KJA, Breuer KS, Choi CH, Huang P, Cao Z, Caswell B, Richardson PD, Sibulkin M (2001) Liquid transport properties in submicron channel flows. In: Proceedings of 2001 ASME international mechanical engineering congress and exposition, November 2001, New York, pp 1116Google Scholar
  20. Wolf HJ (1994) PCProgramme für die Füllsimulation beim Spritzgießen. Ztsch. Kunststoffe, p 84Google Scholar
  21. Yao D, Kim B (2002) Simulation of the filling process in micro channels for polymeric materials. J Micromech Microeng 12:604–6101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Richard Heldele
    • 1
  • Michael Schulz
    • 1
  • David Kauzlaric
    • 2
  • Jan G. Korvink
    • 2
  • Jürgen Haußelt
    • 1
    • 2
  1. 1.Institute for Materials Research IIIForschungszentrum KarlsruheEggenstein-LeopoldshafenGermany
  2. 2.Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany

Personalised recommendations