Advertisement

Perioperative management of patients with atrial fibrillation receiving anticoagulant therapy

  • Takeshi OmaeEmail author
  • Keito Koh
  • Masateru Kumemura
  • Sonoko Sakuraba
  • Yosuke Katsuda
Review Article

Abstract

The number of patients with atrial fibrillation (AF) and the number of patients indicated for anticoagulant therapy have been increasing because AF would affect patient survival due to thromboembolism. Once AF develops, following the disappearance of pulsation, the circumstances within the atrium become prothrombotic and thrombus formation within the left atrium occurs in patients with AF. In recent years, not only warfarin but also new oral anticoagulants were introduced clinically and have become used as oral anticoagulants. In the perioperative period, the risk of major hemorrhage needs to be reduced. On the other hand, the suspension of anticoagulant therapy and neutralization of anticoagulant effects elevate the risk of thrombosis. The perioperative management of patients receiving anticoagulant therapy is different from that of scheduled surgery and emergency surgery. In addition, knowledge of the characteristics of each oral anticoagulant is required at drug cessation and resumption. Unlike warfarin, which has been used in the past five decades, direct oral anticoagulants (DOACs) do not have sensitive indicators such as prothrombin time-international normalized ratio. To avoid major hemorrhages and thromboembolism, quantitative assays can be implemented for DOAC monitoring and for reversal therapies in perioperative settings.

Keywords

Atrial fibrillation Direct oral anticoagulants Hemorrhage Scheduled and emergency surgery Thromboembolism 

Notes

Author contributions

Study conception and design: TO. Data acquisition: TO, KK, and YK. Drafting of the article: MK and SS. Critical revision of the article for important intellectual content: TO.

Compliance with ethical standards

Conflict of interest

The authors have no competing interests to declare.

References

  1. 1.
    Omae T, Inada E. New-onset atrial fibrillation: an update. J Anesth. 2018;32:414–24.CrossRefGoogle Scholar
  2. 2.
    Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98:946–52.CrossRefGoogle Scholar
  3. 3.
    Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–4.CrossRefGoogle Scholar
  4. 4.
    Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med. 1995;155:469–73.CrossRefGoogle Scholar
  5. 5.
    Stroobandt R, Stiels B, Hoebrechts R. Propafenone for conversion and prophylaxis of atrial fibrillation. Propafenone Atrial Fibrillation Trial Investigators. Am J Cardiol. 1997;79:418–23.CrossRefGoogle Scholar
  6. 6.
    Pritchett EL, Page RL, Connolly SJ, Marcello SR, Schnell DJ, Wilkinson WE. Antiarrhythmic effects of azimilide in atrial fibrillation: efficacy and dose–response. Azimilide Supraventricular Arrhythmia Program 3 (SVA-3) Investigators. J Am Coll Cardiol. 2000;36:794–802.CrossRefGoogle Scholar
  7. 7.
    Chung MK, Schweikert RA, Wilkoff BL, Niebauer MJ, Pinski SL, Trohman RG, Kidwell GA, Jaeger FJ, Morant VA, Miller DP, Tchou PJ. Is hospital admission for initiation of antiarrhythmic therapy with sotalol for atrial arrhythmias required? Yield of in-hospital monitoring and prediction of risk for significant arrhythmia complications. J Am Coll Cardiol. 1998;32:169–76.CrossRefGoogle Scholar
  8. 8.
    Zimetbaum PJ, Schreckengost VE, Cohen DJ, Lemery R, Love D, Epstein LM, Laham R, Josephson ME. Evaluation of outpatient initiation of antiarrhythmic drug therapy in patients reverting to sinus rhythm after an episode of atrial fibrillation. Am J Cardiol. 1999;83(450–2):A9.Google Scholar
  9. 9.
    Singer DE, Chang Y, Fang MC, Borowsky LH, Pomernacki NK, Udaltsova N, Go AS. The net clinical benefit of warfarin anticoagulation in atrial fibrillation. Ann Intern Med. 2009;15:297–305.CrossRefGoogle Scholar
  10. 10.
    Maruyama I. Biology of endothelium. Lupus. 1998;7(Suppl 2):S41–3.CrossRefGoogle Scholar
  11. 11.
    Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93:141–7.CrossRefGoogle Scholar
  12. 12.
    Lowenstein CJ. Nitric oxide regulation of protein trafficking in the cardiovascular system. Cardiovasc Res. 2007;75:240–6.CrossRefGoogle Scholar
  13. 13.
    Mizumoto N, Kumamoto T, Robson SC, Sévigny J, Matsue H, Enjyoji K, Takashima A. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med. 2002;8:358–65.CrossRefGoogle Scholar
  14. 14.
    Mackman N, Taubman MB. Does tissue factor expression by vascular smooth muscle cells provide a link between C-reactive protein and cardiovascular disease? Arterioscler Thromb Vasc Biol. 2008;28:601–3.CrossRefGoogle Scholar
  15. 15.
    Esmon CT. New mechanisms for vascular control of inflammation mediated by natural anticoagulant proteins. J Exp Med. 2002;196:561–4.CrossRefGoogle Scholar
  16. 16.
    Chen VM, Hogg PJ. Allosteric disulfide bonds in thrombosis and thrombolysis. J Thromb Haemost. 2006;4:2533–41.CrossRefGoogle Scholar
  17. 17.
    Lender D, Sysko SK. The metabolic syndrome and cardiometabolic risk: scope of the problem and current standard of care. Pharmacotherapy. 2006;26(5 Pt 2):3S–12S.CrossRefGoogle Scholar
  18. 18.
    Franchini M, Targher G, Montagnana M, Lippi G. The metabolic syndrome and the risk of arterial and venous thrombosis. Thromb Res. 2008;122:727–35.CrossRefGoogle Scholar
  19. 19.
    Alessi MC, Juhan-Vague I. Metabolic syndrome, haemostasis and thrombosis. Thromb Haemost. 2008;99:995–1000.CrossRefGoogle Scholar
  20. 20.
    Ito T, Kakihana Y, Maruyama I. Thrombomodulin as an intravascular safeguard against inflammatory and thrombotic diseases. Expert Opin Ther Targets. 2016;20:151–8.CrossRefGoogle Scholar
  21. 21.
    Yamashita T, Sekiguchi A, Iwasaki YK, Sagara K, Hatano S, Iinuma H, Aizawa T, Fu LT. Thrombomodulin and tissue factor pathway inhibitor in endocardium of rapidly paced rat atria. Circulation. 2003;108:2450–2.CrossRefGoogle Scholar
  22. 22.
    Nosaka S, Hashimoto M, Sasaki T, Ku K, Saitoh Y, Hanada T, Yamauchi M, Masumura S, Nakayama K, Tamura K. Antithrombotic effects of endocardial endothelial cells-comparison with coronary artery endothelial cells. Prostaglandins. 1997;53:305–19.CrossRefGoogle Scholar
  23. 23.
    Di Minno MN, Ambrosino P, Dello Russo A, Casella M, Tremoli E, Tondo C. Prevalence of left atrial thrombus in patients with non-valvular atrial fibrillation. A systematic review and meta-analysis of the literature. Thromb Haemost. 2016;115:663–77.CrossRefGoogle Scholar
  24. 24.
    Beigel R, Wunderlich NC, Ho SY, Arsanjani R, Siegel RJ. The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC Cardiovasc Imaging. 2014;7:1251–65.CrossRefGoogle Scholar
  25. 25.
    Klein AL, Grimm RA, Murray RD, Apperson-Hansen C, Asinger RW, Black IW, Davidoff R, Erbel R, Halperin JL, Orsinelli DA, Porter TR, Stoddard MF, Assessment of Cardioversion Using Transesophageal Echocardiography Investigators. Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. N Engl J Med. 2001;344:1411–20.CrossRefGoogle Scholar
  26. 26.
    Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;19(146):857–67.CrossRefGoogle Scholar
  27. 27.
    Tie Jian-Ke, Jin Da-Yun, Tie Kevin, Stafford Darrel W. Evaluation of warfarin resistance using TALENs-mediated vitamin K epoxide reductase knockout HEK293 cells. J Thromb Haemost. 2013;11:1556–64.CrossRefGoogle Scholar
  28. 28.
    Tie Jian-Ke, Stafford Darrel W. Structural and functional insights into enzymes of the vitamin K cycle. J Thromb Haemost. 2016;14:236–47.CrossRefGoogle Scholar
  29. 29.
    Holbrook AM, Pereira JA, Labiris R, McDonald H, Douketis JD, Crowther M, Wells PS. Systematic overview of warfarin and its drug and food interactions. Arch Intern Med. 2005;165:1095–106.CrossRefGoogle Scholar
  30. 30.
    Homma K, Wakana N, Suzuki Y, Nukui M, Daimatsu T, Tanaka E, Tanaka K, Koga Y, Nakajima Y, Nakazawa H. Treatment of natto, a fermented soybean preparation, to prevent excessive plasma vitamin K concentrations in patients taking warfarin. J Nutr Sci Vitaminol. 2006;52:297–301.CrossRefGoogle Scholar
  31. 31.
    January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW, American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;2014(64):e1–76.CrossRefGoogle Scholar
  32. 32.
    El Rouby S, Mestres CA, LaDuca FM, Zucker ML. Racial and ethnic differences in warfarin response. J Heart Valve Dis. 2004;13:15–21.Google Scholar
  33. 33.
    Momary KM, Shapiro NL, Viana MA, Nutescu EA, Helgason CM, Cavallari LH. Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics. 2007;8:1535–44.CrossRefGoogle Scholar
  34. 34.
    Shen AY, Yao JF, Brar SS, Jorgensen MB, Chen W. Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J Am Coll Cardiol. 2007;50:309–15.CrossRefGoogle Scholar
  35. 35.
    Liu T, Hui J, Hou YY, Zou Y, Jiang WP, Yang XJ, Wang XH. Meta-analysis of efficacy and safety of low-intensity warfarin therapy for east asian patients with nonvalvular atrial fibrillation. Am J Cardiol. 2017;120:1562–7.CrossRefGoogle Scholar
  36. 36.
    De T, Alarcon C, Hernandez W, Liko I, Cavallari LH, Duarte JD, Perera MA. Association of Genetic Variants With Warfarin-Associated Bleeding Among Patients of African Descent. JAMA. 2018;320:1670–7.CrossRefGoogle Scholar
  37. 37.
    JCS Joint Working Group. Guidelines for pharmacotherapy of atrial fibrillation (JCS 2013). Circ J. 2014;78:1997–2021.CrossRefGoogle Scholar
  38. 38.
    Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Reilly PA, Themeles E, Varrone J, Wang S, Alings M, Xavier D, Zhu J, Diaz R, Lewis BS, Darius H, Diener HC, Joyner CD, Wallentin L, RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139–51.CrossRefGoogle Scholar
  39. 39.
    Stangier J, Rathgen K, Stähle H, Gansser D, Roth W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol. 2007;64:292–303.CrossRefGoogle Scholar
  40. 40.
    Turpie AG. New oral anticoagulants in atrial fibrillation. Eur Heart J. 2008;29:155–65.CrossRefGoogle Scholar
  41. 41.
    Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G, Halperin JL, Hankey GJ, Piccini JP, Becker RC, Nessel CC, Paolini JF, Berkowitz SD, Fox KA, Califf RM, ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–91.CrossRefGoogle Scholar
  42. 42.
    Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, Al-Khalidi HR, Ansell J, Atar D, Avezum A, Bahit MC, Diaz R, Easton JD, Ezekowitz JA, Flaker G, Garcia D, Geraldes M, Gersh BJ, Golitsyn S, Goto S, Hermosillo AG, Hohnloser SH, Horowitz J, Mohan P, Jansky P, Lewis BS, Lopez-Sendon JL, Pais P, Parkhomenko A, Verheugt FW, Zhu J, Wallentin L, ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–92.CrossRefGoogle Scholar
  43. 43.
    Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, Waldo AL, Ezekowitz MD, Weitz JI, Špinar J, Ruzyllo W, Ruda M, Koretsune Y, Betcher J, Shi M, Grip LT, Patel SP, Patel I, Hanyok JJ, Mercuri M, Antman EM, ENGAGE AF-TIMI 48 Investigators. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369:2093–104.CrossRefGoogle Scholar
  44. 44.
    Umer Usman MH, Raza S, Raza S, Ezekowitz M. Advancement in antithrombotics for stroke prevention in atrial fibrillation. J Interv Card Electrophysiol. 2008;22:129–37.CrossRefGoogle Scholar
  45. 45.
    Paul B, Oxley A, Brigham K, Cox T, Hamilton PJ. Factor II, VII, IX and X concentrations in patients receiving long term warfarin. J Clin Pathol. 1987;40:94–8.CrossRefGoogle Scholar
  46. 46.
    Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, Lee MT, Gage BF, Kimmel SE, Perera MA, Anderson JL, Pirmohamed M, Klein TE, Limdi NA, Cavallari LH, Wadelius M. Clinical pharmacogenetics implementation consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102:397–404.CrossRefGoogle Scholar
  47. 47.
    King CS, Holley AB, Moores LK. Moving toward a more ideal anticoagulant: the oral direct thrombin and factor Xa inhibitors. Chest. 2013;143:1106–16.CrossRefGoogle Scholar
  48. 48.
    Cabral KP. Pharmacology of the new target-specific oral anticoagulants. J Thromb Thrombolysis. 2013;36:133–40.CrossRefGoogle Scholar
  49. 49.
    Heidbuchel H, Verhamme P, Alings M, Antz M, Hacke W, Oldgren J, Sinnaeve P, Camm AJ, Kirchhof P, European Heart Rhythm Association. European Heart Rhythm Association Practical Guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2013;15:625–51.CrossRefGoogle Scholar
  50. 50.
    Lindahl TL, Baghaei F, Blixter IF, Gustafsson KM, Stigendal L, Sten-Linder M, Strandberg K, Hillarp A, Expert Group on Coagulation of the External Quality Assurance in Laboratory Medicine in Sweden. Effects of the oral, direct thrombin inhibitor dabigatran on five common coagulation assays. Thromb Haemost. 2011;105:371–8.CrossRefGoogle Scholar
  51. 51.
    van Ryn J, Stangier J, Haertter S, Liesenfeld KH, Wienen W, Feuring M, Clemens A. Dabigatran etexilate—a novel, reversible, oral direct thrombin inhibitor: interpretation of coagulation assays and reversal of anticoagulant activity. Thromb Haemost. 2010;103:1116–27.CrossRefGoogle Scholar
  52. 52.
    Avecilla ST, Ferrell C, Chandler WL, Reyes M. Plasma-diluted thrombin time to measure dabigatran concentrations during dabigatran etexilate therapy. Am J Clin Pathol. 2012;137:572–4.CrossRefGoogle Scholar
  53. 53.
    Lippi G, Favaloro EJ. Recent guidelines and recommendations for laboratory assessment of the direct oral anticoagulants (DOACs): is there consensus? Clin Chem Lab Med. 2015;53:185–97.Google Scholar
  54. 54.
    Zhang C, Zhang P, Li H, Han L, Zhang L, Zhang L, Yang X. The effect of dabigatran on thrombin generation and coagulation assays in rabbit and human plasma. Thromb Res. 2018;165:38–43.CrossRefGoogle Scholar
  55. 55.
    Samuelson BT, Cuker A, Siegal DM, Crowther M, Garcia DA. Laboratory assessment of the anticoagulant activity of direct oral anticoagulants: a systematic review. Chest. 2017;151:127–38.CrossRefGoogle Scholar
  56. 56.
    Baglin T, Hillarp A, Tripodi A, Elalamy I, Buller H, Ageno W. Measuring Oral Direct Inhibitors (ODIs) of thrombin and factor Xa: a recommendation from the Subcommittee on Control of Anticoagulation of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost. 2013;11:756–60.CrossRefGoogle Scholar
  57. 57.
    Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G. Oral anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e44S–88S.CrossRefGoogle Scholar
  58. 58.
    Šinigoj P, Malmström RE, Vene N, Rönquist-Nii Y, Božič-Mijovski M, Pohanka A, Antovic JP, Mavri A. Dabigatran concentration: variability and potential bleeding prediction in “real-life” patients with atrial fibrillation. Basic Clin Pharmacol Toxicol. 2015;117:323–9.CrossRefGoogle Scholar
  59. 59.
    Skeppholm M, Hjemdahl P, Antovic JP, Muhrbeck J, Eintrei J, Rönquist-Nii Y, Pohanka A, Beck O, Malmström RE. On the monitoring of dabigatran treatment in “real life” patients with atrial fibrillation. Thromb Res. 2014;134:783–9.CrossRefGoogle Scholar
  60. 60.
    Douxfils J, Lessire S, Dincq AS, Hjemdahl P, Rönquist-Nii Y, Pohanka A, Gourdin M, Chatelain B, Dogné JM, Mullier F. Estimation of dabigatran plasma concentrations in the perioperative setting. An ex vivo study using dedicated coagulation assays. Thromb Haemost. 2015;113:862–9.CrossRefGoogle Scholar
  61. 61.
    Comuth WJ, Henriksen LØ, van de Kerkhof D, Husted SE, Kristensen SD, de Maat MPM, Münster AB. Comprehensive characteristics of the anticoagulant activity of dabigatran in relation to its plasma concentration. Thromb Res. 2018;164:32–9.CrossRefGoogle Scholar
  62. 62.
    Graff J, Harder S. Anticoagulant therapy with the oral direct factor Xa inhibitors rivaroxaban, apixaban and edoxaban and the thrombin inhibitor dabigatran etexilate in patients with hepatic impairment. Clin Pharmacokinet. 2013;52:243–54.CrossRefGoogle Scholar
  63. 63.
    Tanigawa T, Kaneko M, Hashizume K, Kajikawa M, Ueda H, Tajiri M, Paolini JF, Mueck W. Model-based dose selection for phase III rivaroxaban study in Japanese patients with non-valvular atrial fibrillation. Drug Metab Pharmacokinet. 2013;28:59–70.CrossRefGoogle Scholar
  64. 64.
    Frost C, Wang J, Nepal S, Schuster A, Barrett YC, Mosqueda-Garcia R, Reeves RA, LaCreta F. Apixaban, an oral, direct factor Xa inhibitor: single dose safety, pharmacokinetics, pharmacodynamics and food effect in healthy subjects. Br J Clin Pharmacol. 2013;75:476–87.CrossRefGoogle Scholar
  65. 65.
    Douxfils J, Chatelain C, Chatelain B, Dogné JM, Mullier F. Impact of apixaban on routine and specific coagulation assays: a practical laboratory guide. Thromb Haemost. 2013;110:283–94.CrossRefGoogle Scholar
  66. 66.
    Wolzt M, Samama MM, Kapiotis S, Ogata K, Mendell J, Kunitada S. Effect of edoxaban on markers of coagulation in venous and shed blood compared with fondaparinux. Thromb Haemost. 2011;105:1080–90.CrossRefGoogle Scholar
  67. 67.
    Samama MM, Martinoli JL, LeFlem L, Guinet C, Plu-Bureau G, Depasse F, Perzborn E. Assessment of laboratory assays to measure rivaroxaban–an oral, direct factor Xa inhibitor. Thromb Haemost. 2010;103:815–25.CrossRefGoogle Scholar
  68. 68.
    Rathbun S, Tafur A, Grant R, Esmon N, Mauer K, Marlar RA. Comparison of methods to determine rivaroxaban anti-factor Xa activity. Thromb Res. 2015;135:394–7.CrossRefGoogle Scholar
  69. 69.
    Gouin-Thibault I, Flaujac C, Delavenne X, Quenet S, Horellou MH, Laporte S, Siguret V, Lecompte T. Assessment of apixaban plasma levels by laboratory tests: suitability of three anti-Xa assays. A multicentre French GEHT study. Thromb Haemost. 2014;112:240–8.Google Scholar
  70. 70.
    Samama MM, Mendell J, Guinet C, Le Flem L, Kunitada S. In vitro study of the anticoagulant effects of edoxaban and its effect on thrombin generation in comparison to fondaparinux. Thromb Res. 2012;129:e77–82.CrossRefGoogle Scholar
  71. 71.
    Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22:983–8.CrossRefGoogle Scholar
  72. 72.
    Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the manitoba follow-up study. Am J Med. 1995;98:476–84.CrossRefGoogle Scholar
  73. 73.
    Levy S, Maarek M, Coumel P, Guize L, Lekieffre J, Medvedowsky JL, Sebaoun A. Characterization of different subsets of atrial fibrillation in general practice in France: the ALFA study. The College of French Cardiologists. Circulation. 1999;99:3028–35.CrossRefGoogle Scholar
  74. 74.
    Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EB, Kellen JC, Greene HL, Mickel MC, Dalquist JE, Corley SD, Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Investigators. A comparison of rate control and rhythm control in patients with atrial fibrillation. New Engl J Med. 2002;347:1825–33.CrossRefGoogle Scholar
  75. 75.
    White RH, McKittrick T, Hutchinson R, Twitchell J. Temporary discontinuation of warfarin therapy: changes in the international normalized ratio. Ann Intern Med. 1995;122:40–2.CrossRefGoogle Scholar
  76. 76.
    Watala C, Golanski J, Kardas P. Multivariate relationships between international normalized ratio and vitamin K-dependent coagulation-derived parameters in normal healthy donors and oral anticoagulant therapy patients. Thromb J. 2003;1:7.CrossRefGoogle Scholar
  77. 77.
    Hori M, Matsumoto M, Tanahashi N, Momomura S, Uchiyama S, Goto S, Izumi T, Koretsune Y, Kajikawa M, Kato M, Ueda H, Iwamoto K, Tajiri M. Rivaroxaban vs. warfarin in Japanese patients with atrial fibrillation—the J-ROCKET AF study. Circ J. 2012;76:2104–11.CrossRefGoogle Scholar
  78. 78.
    Yasaka M. J-ROCKET AF trial increased expectation of lower-dose rivaroxaban made for Japan. Circ J. 2012;76:2086–7.CrossRefGoogle Scholar
  79. 79.
    Yasaka M. Current strategies of anticoagulation therapy for patients with non-valvular atrial fibrillation. J Arrhythmia. 2012;28:324–9.CrossRefGoogle Scholar
  80. 80.
    Limdi NA, Wiener H, Goldstein JA, Acton RT, Beasley TM. Influence of CYP2C9 and VKORC1 on warfarin response during initiation of therapy. Blood Cells Mol Dis. 2009;43:119–28.CrossRefGoogle Scholar
  81. 81.
    Raval AN, Cigarroa JE, Chung MK, Diaz-Sandoval LJ, Diercks D, Piccini JP, Jung HS, Washam JB, Welch BG, Zazulia AR, Collins SP, American Heart Association Clinical Pharmacology Subcommittee of the Acute Cardiac Care and General Cardiology Committee of the Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; and Council on Quality of Care and Outcomes Research. Management of patients on non-vitamin k antagonist oral anticoagulants in the acute care and periprocedural setting: a scientific statement from the American Heart Association. Circulation. 2017;135:e604–33.CrossRefGoogle Scholar
  82. 82.
    Choonara IA, Scott AK, Haynes BP, Cholerton S, Breckenridge AM, Park BK. Vitamin K1 metabolism in relation to pharmacodynamic response in anticoagulated patients. Br J Clin Pharmacol. 1985;20:643–8.CrossRefGoogle Scholar
  83. 83.
    Sarode R, Milling TJ Jr, Refaai MA, Mangione A, Schneider A, Durn BL, Goldstein JN. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation. 2013;128:1234–43.CrossRefGoogle Scholar
  84. 84.
    Kushimoto S, Fukuoka T, Kimura A, Toyoda K, Brainsky A, Harman A, Chung T, Yasaka M. Efficacy and safety of a 4-factor prothrombin complex concentrate for rapid vitamin K antagonist reversal in Japanese patients presenting with major bleeding or requiring urgent surgical or invasive procedures: a prospective, open-label, single-arm phase 3b study. Int J Hematol. 2017;106:777–86.CrossRefGoogle Scholar
  85. 85.
    Goldstein JN, Refaai MA, Milling TJ Jr, Lewis B, Goldberg-Alberts R, Hug BA, Sarode R. Four-factor prothrombin complex concentrate versus plasma for rapid vitamin K antagonist reversal in patients needing urgent surgical or invasive interventions: a phase 3b, open-label, non-inferiority, randomised trial. Lancet. 2015;385:2077–87.CrossRefGoogle Scholar
  86. 86.
    Brekelmans MPA, Ginkel KV, Daams JG, Hutten BA, Middeldorp S, Coppens M. Benefits and harms of 4-factor prothrombin complex concentrate for reversal of vitamin K antagonist associated bleeding: a systematic review and meta-analysis. J Thromb Thrombolysis. 2017;44:118–29.CrossRefGoogle Scholar
  87. 87.
    Monagle P, Chan AKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Göttl U, Vesely SK. Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e737S–801S.CrossRefGoogle Scholar
  88. 88.
    Yasaka M, Sakata T, Minematsu K, Naritomi H. Correction of INR by prothrombin complex concentrate and vitamin K in patients with warfarin related hemorrhagic complication. Thromb Res. 2002;108:25–30.CrossRefGoogle Scholar
  89. 89.
    Greinacher A, Thiele T, Selleng K. Reversal of anticoagulants: an overview of current developments. Thromb Haemost. 2015;113:931–42.CrossRefGoogle Scholar
  90. 90.
    Glund S, Moschetti V, Norris S, Stangier J, Schmohl M, van Ryn J, Lang B, Ramael S, Reilly P. A randomised study in healthy volunteers to investigate the safety, tolerability and pharmacokinetics of idarucizumab, a specific antidote to dabigatran. Thromb Haemost. 2015;113:943–51.CrossRefGoogle Scholar
  91. 91.
    Pollack CV Jr, Reilly PA, Eikelboom J, Glund S, Verhamme P, Bernstein RA, Dubiel R, Huisman MV, Hylek EM, Kamphuisen PW, Kreuzer J, Levy JH, Sellke FW, Stangier J, Steiner T, Wang B, Kam CW, Weitz JI. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373:511–20.CrossRefGoogle Scholar
  92. 92.
    Pollack CV Jr, Reilly PA, van Ryn J, Eikelboom JW, Glund S, Bernstein RA, Dubiel R, Huisman MV, Hylek EM, Kam CW, Kamphuisen PW, Kreuzer J, Levy JH, Royle G, Sellke FW, Stangier J, Steiner T, Verhamme P, Wang B, Young L, Weitz JI. Idarucizumab for dabigatran reversal—full cohort analysis. N Engl J Med. 2017;377:431–41.CrossRefGoogle Scholar
  93. 93.
    Schmohl M, Glund S, Harada A, Imazu S, De Smet M, Moschetti V, Ramael S, Ikushima I, Grünenfelder F, Reilly P, Stangier J. Idarucizumab does not have procoagulant effects: assessment of thrombosis biomarkers in healthy volunteers. Thromb Haemost. 2017;117:269–76.CrossRefGoogle Scholar
  94. 94.
    Tummala R, Kavtaradze A, Gupta A, Ghosh RK. Specific antidotes against direct oral anticoagulants: a comprehensive review of clinical trials data. Int J Cardiol. 2016;214:292–8.CrossRefGoogle Scholar
  95. 95.
    Eerenberg ES, Kamphuisen PW, Sijpkens MK, Meijers JC, Buller HR, Levi M. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation. 2011;124:1573–9.CrossRefGoogle Scholar
  96. 96.
    Enriquez A, Lip GY, Baranchuk A. Anticoagulation reversal in the era of the non-vitamin K oral anticoagulants. Europace. 2016;18:955–64.CrossRefGoogle Scholar
  97. 97.
    Siegal DM, Curnutte JT, Connolly SJ, Lu G, Conley PB, Wiens BL, Mathur VS, Castillo J, Bronson MD, Leeds JM, Mar FA, Gold A, Crowther MA. Andexanet alfa for the reversal of factor Xa inhibitor activity. N Engl J Med. 2015;373:2413–24.CrossRefGoogle Scholar
  98. 98.
    Connolly SJ, Milling TJ Jr, Eikelboom JW, Gibson CM, Curnutte JT, Gold A, Bronson MD, Lu G, Conley PB, Verhamme P, Schmidt J, Middeldorp S, Cohen AT, Beyer-Westendorf J, Albaladejo P, Lopez-Sendon J, Goodman S, Leeds J, Wiens BL, Siegal DM, Zotova E, Meeks B, Nakamya J, Lim WT, Crowther M, ANNEXA-4 Investigators. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. N Engl J Med. 2016;375:1131–41.CrossRefGoogle Scholar
  99. 99.
    Rogers KC, Finks SW. A new option for reversing the anticoagulant effect of factor Xa inhibitors: andexanet alfa (ANDEXXA). Am J Med. 2019;132:38–41.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Pain ClinicJuntendo University Shizuoka HospitalIzunokuniJapan

Personalised recommendations