Advertisement

Journal of Anesthesia

, Volume 33, Issue 2, pp 304–310 | Cite as

Intraoperative vasoplegic syndrome in patients with fulminant myocarditis on ventricular assist device placement

  • Mariko EzakaEmail author
  • Takuma Maeda
  • Yoshihiko Ohnishi
Original Paper
  • 60 Downloads

Abstract

Purpose

Fulminant myocarditis is uncommon, but life-threatening, and some patients need mechanical circulatory support. This study was performed to evaluate how different types of mechanical circulatory support—biventricular assist device (BiVAD) or left ventricular assist device (LVAD) placement—affect intraoperative hemodynamic status.

Methods

From January 2013 to September 2016, the patients who underwent BiVAD or LVAD placement for fulminant myocarditis were analyzed. The mean arterial pressure (MAP), mean pulmonary arterial pressure, central venous pressure (CVP), vasoactive score, and inotropic score were recorded at five time points: after the induction of anesthesia; at weaning, 30 min after weaning, and 60 min after weaning from cardiopulmonary bypass (CPB); and at the end of surgery. The vasoactive and inotropic scores were calculated as follows: vasoactive score = norepinephrine (µg/kg/min) × 100 + milrinone (µg/kg/min) × 10 + olprinone (µg/kg/min) × 25: inotropic score = dopamine (µg/kg/min) × 1 + dobutamine (µg/kg/min) × 1 + epinephrine (µg/kg/min) × 100.

Results

We enrolled 16 patients of fulminant myocarditis. Ten of them underwent BiVAD placement, and the other underwent LVAD placement. After weaning from CPB, the BiVAD group had a significantly lower MAP but no difference in CVP. The vasoactive score was significantly higher in the BiVAD group at weaning of CPB (p = 0.015), 30 min after weaning (p = 0.004), 60 min after weaning (p = 0.005), and at the end of surgery (p < 0.016).

Conclusion

Patients with BiVAD placement required more vasoactive support to maintain optimal hemodynamic status compared with those with LVAD placement. This result indicates that BiVAD placement was more associated with vasoplegic syndrome.

Keywords

Fulminant myocarditis Ventricular assist device Vasoplegic syndrome 

Notes

References

  1. 1.
    Cooper LT. Myocarditis. N Engl J Med. 2009;360:1526–38.CrossRefGoogle Scholar
  2. 2.
    Maisch B, Ruppert V, Pankuweit S. Management of fulminant myocarditis: a diagnosis in search of its etiology but with therapeutic options. Curr Heart Fail Rep. 2014;11:166–77.CrossRefGoogle Scholar
  3. 3.
    Aoyama N, Izumi T, Hiramori K, Isobe M, Kawana M, Hiroe M, Hishida H, Kitaura Y, Imaizumi T, Japanese Investigators of Fulminant Myocarditis. National survey of fulminant myocarditis in Japan: therapeutic guidelines and long-term prognosis of using percutaneous cardiopulmonary support for fulminant myocarditis (special report from a scientific committee). Circ J. 2002;66:133–44.CrossRefGoogle Scholar
  4. 4.
    Ting M, Wang CH, Tsao CI, Huang SC, Chi NH, Chou NK, Chen YS, Wang SS. Heart transplantation under mechanical circulatory support for acute fulminant myocarditis with cardiogenic shock: 10 years’ experience of a single center. Transpl Proc. 2016;48:951–5.CrossRefGoogle Scholar
  5. 5.
    Lorusso R, Centofanti P, Gelsomino S, Barili F, Di Mauro M, Orlando P, Botta L, Milazzo F, Actis Dato G, Casabona R, Casali G, Musumeci F, De Bonis M, Zangrillo A, Alfieri O, Pellegrini C, Mazzola S, Coletti G, Vizzardi E, Bianco R, Gerosa G, Massetti M, Caldaroni F, Pilato E, Pacini D, Di Bartolomeo R, Marinelli G, Sponga S, Livi U, Mauro R, Mariscalco G, Beghi C, Miceli A, Glauber M, Pappalardo F, Russo CF, GIROC Investigators. Venoarterial extracorporeal membrane oxygenation for acute fulminant myocarditis in adult patients: a 5-year multi-institutional experience. Ann Thorac Surg. 2016;101:919–26.CrossRefGoogle Scholar
  6. 6.
    Atluri P, Ullery BW, MacArthur JW, Goldstone AB, Fairman AS, Hiesinger W, Acker MA, Woo YJ. Rapid onset of fulminant myocarditis portends a favourable prognosis and the ability to bridge mechanical circulatory support to recovery. Eur J Cardiothorac Surg. 2013;43:379–82.CrossRefGoogle Scholar
  7. 7.
    Grinda JM, Chevalier P, D’Attellis N, Bricourt MO, Berrebi A, Guibourt P, Fabiani JN, Deloche A. Fulminant myocarditis in adults and children: Hence assist device for recovery. Eur J Cardiothorac Surg. 2004;26:1169–73.CrossRefGoogle Scholar
  8. 8.
    Mody KP, Takayama H, Landes E, Yuzefpolskaya M, Colombo PC, Naka Y, Jorde UP, Uriel N. Acute mechanical circulatory support for fulminant myocarditis complicated by cardiogenic shock. J Cardiovasc Transl Res. 2014;7:156–64.CrossRefGoogle Scholar
  9. 9.
    Lieberman EB, Hutchins GM, Herskowitz A, Rose NR, Baughman KL. Clinicopathologic description of myocarditis. J Am Coll Cardiol. 1991;18:1617–26.CrossRefGoogle Scholar
  10. 10.
    Garcia RU, Walters HL, Delius RE, Aggarwal S. Vasoactive Inotropic Score (VIS) as biomarker of short-term outcomes in adolescents after cardiothoracic surgery. Pediatr Cardiol. 2016;37:271–7.CrossRefGoogle Scholar
  11. 11.
    Maeda T, Toda K, Kamei M, Miyata S, Ohnishi Y. Impact of preoperative extracorporeal membrane oxygenation on vasoactive inotrope score after implantation of left ventricular assist device. Springerplus. 2015;30:821.CrossRefGoogle Scholar
  12. 12.
    Gaies MG, Jeffries HE, Niebler RA, Pasquali SK, Donohue JE, Yu S, Gall C, Rice TB, Thiagarajan RR. Vasoactive-inotropic score is associated with outcome after infant cardiac surgery: an analysis from the Pediatric Cardiac Critical Care Consortium and Virtual PICU System Registries. Pediatr Crit Care Med. 2014;15:529–37.CrossRefGoogle Scholar
  13. 13.
    Lambden S, Creagh-Brown BC, Hunt J, Summers C, Forni LG. Definitions and pathophysiology of vasoplegic shock. Crit Care. 2018;22:174.CrossRefGoogle Scholar
  14. 14.
    Carrel T, Englberger L, Mohacsi P, Neidhart P, Schmidli J. Low systemic vascular resistance after cardiopulmonary bypass: incidence, etiology, and clinical importance. J Card Surg. 2000;15:347–53.CrossRefGoogle Scholar
  15. 15.
    Tecson KM, Lima B, Lee AY, Raza FS, Ching G, Lee CH, Felius J, Baxter RD, Still S, Collier JDG, Hall SA, Joseph SM. Determinants and outcomes of vasoplegia following left ventricular assist device implantation. J Am Heart Assoc. 2018;7:e008377.CrossRefGoogle Scholar
  16. 16.
    Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care. 2016;20:387.CrossRefGoogle Scholar
  17. 17.
    McILwain RB, Timpa JG, Kurundkar AR, Holt DW, Kelly DR, Hartman YE, Neel ML, Karnatak RK, Schelonka RL, Anantharamaiah GM, Killingsworth CR, Maheshwari A. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Investig. 2010;90:128–39.CrossRefGoogle Scholar
  18. 18.
    Colson PH, Bernard C, Struck J, Morgenthaler NG, Albat B, Guillon G. Post cardiac surgery vasoplegia is associated with high preoperative copeptin plasma concentration. Crit Care. 2011;15:R255.CrossRefGoogle Scholar
  19. 19.
    Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, Rhodes A, Landoni G, Osawa EA, Melo RR, Sundin MR, Grande SM, Gaiotto FA, Pomerantzeff PM, Dallan LO, Franco RA, Nakamura RE, Lisboa LA, de Almeida JP, Gerent AM, Souza DH, Gaiane MA, Fukushima JT, Park CL, Zambolim C, Rocha Ferreira GS, Strabelli TM, Fernandes FL, Camara L, Zeferino S, Santos VG, Piccioni MA, Jatene FB, Costa Auler JO Jr, Filho RK. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017;126:85–93.CrossRefGoogle Scholar
  20. 20.
    Catena E, Paino R, Milazzo F, Colombo T, Marianeschi S, Lanfranconi M, Aresta F, Bruschi G, Russo C, Vitali E. Mechanical circulatory support for patients with fulminant myocarditis: the role of echocardiography to address diagnosis, choice of device, management, and recovery. J Cardiothorac Vasc Anesth. 2009;23:87–94.CrossRefGoogle Scholar
  21. 21.
    Tschöpe C, Van Linthout S, Klein O, Mairinger T, Krackhardt F, Potapov EV, Schmidt G, Burkhoff D, Pieske B, Spillmann F. Mechanical unloading by fulminant myocarditis: LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA concepts. J Cardiovasc Transl Res. 2018.  https://doi.org/10.1007/s12265-018-9820-2 Google Scholar

Copyright information

© Japanese Society of Anesthesiologists 2019

Authors and Affiliations

  • Mariko Ezaka
    • 1
    Email author
  • Takuma Maeda
    • 2
    • 3
  • Yoshihiko Ohnishi
    • 2
  1. 1.Department of AnesthesiologyNew Tokyo HospitalMatsudoJapan
  2. 2.Department of AnesthesiologyNational Cerebral and Cardiovascular CenterSuitaJapan
  3. 3.Division of Transfusion MedicineNational Cerebral and Cardiovascular CenterSuitaJapan

Personalised recommendations