Journal of Anesthesia

, Volume 33, Issue 2, pp 336–340 | Cite as

Brain white matter lesions and postoperative cognitive dysfunction: a review

  • Shinichi NakaoEmail author
  • Tomohisa Yamamoto
  • Seishi Kimura
  • Takashi Mino
  • Tatsushige Iwamoto
Review Article


Postoperative cognitive dysfunction (POCD) is a serious complication of anesthesia and surgery, and the major risk factor of POCD is aging. Although the exact pathophysiology of POCD remains unknown, two possible and reliable mechanisms have been proposed: neuroinflammation and neurodegeneration, i.e., amyloid β accumulation and/or tau protein phosphorylation, by surgery and/or general anesthetics. White matter lesions (WML) are produced by chronic cerebral hypoperfusion, frequently observed in elderly people, and closely related to cognitive decline. As recent studies have revealed that WML are a significant risk factor for POCD in humans, and we previously also demonstrated that persistent hypocapnea or hypotension caused neuronal damage in the caudoputamen or the hippocampus in a rat model of chronic cerebral hypoperfusion, which features global cerebral WML without neuronal damage and is recognized as a good model of human vascular dementia especially in elderly people, we hypothesize that in addition to those two previously proposed mechanisms, perioperative vital sign changes that cause reductions in cerebral blood flow might contribute to POCD in patients with WML, whose cerebral blood flow is already considerably decreased.


White matter lesion Postoperative cognitive dysfunction Chronic cerebral hypoperfusion Aging 



  1. 1.
    Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, Rabbitt P, Jolles J, Larsen K, Hanning CD, Langeron O, Johnson T, Lauven PM, Kristensen PA, Biedler A, van Beem H, Fraidakis O, Silverstein JH, Beneken JE, Gravenstein JS. Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. Lancet. 1998;351:857–61.CrossRefGoogle Scholar
  2. 2.
    Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM, Gravenstein JS. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108:18–30.CrossRefGoogle Scholar
  3. 3.
    Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS, ISPOCD Group. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009;110:548–55.CrossRefGoogle Scholar
  4. 4.
    Xie Z, Culley DJ, Dong Y, Zhang G, Zhang B, Moir RD, Frosch MP, Crosby G, Tanzi RE. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo. Ann Neurol. 2008;64:618–27.CrossRefGoogle Scholar
  5. 5.
    Dong Y, Zhang G, Zhang B, Moir RD, Xia W, Marcantonio ER, Culley DJ, Crosby G, Tanzi RE, Xie Z. The common anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein. Arch Neurol. 2009;66:620–31.CrossRefGoogle Scholar
  6. 6.
    Zhang B, Dong Y, Zhang G, Moir RD, Xia W, Yue Y, Tian M, Culley DJ, Crosby G, Tanzi RE, Xie Z. The inhalation anesthetic desflurane induces caspase activation and increases amyloid beta-protein level under hypoxic conditions. J Biol Chem. 2008;283:11866–75.CrossRefGoogle Scholar
  7. 7.
    Jiang JUE, Jiang H. Effect of the inhaled anesthetics isoflurane, sevoflurane and desflurane on the neuropathogenesis of Alzheimer’s disease (Review). Mol Med Rep. 2015;12:3–12.CrossRefGoogle Scholar
  8. 8.
    Zhang B, Tian M, Zheng H, Zhen Y, Yue Y, Li T, Li S, Marcantonio ER, Xie Z. Effects of anesthetic isoflurane and desflurane on human cerebrospinal fluid Aβ and τ level. Anesthesiology. 2013;119:52–60.CrossRefGoogle Scholar
  9. 9.
    Liu Y, Pan N, Ma Y, Zhang S, Guo W, Li H, Zhou J, Liu G, Gao M. Inhaled sevoflurane may promote progression of amnestic mild cognitive impairment: a prospective, randomized parallel-group study. Am J Med Sci. 2013;345:355–60.CrossRefGoogle Scholar
  10. 10.
    Wu X, Lu Y, Dong Y, Zhang G, Zhang Y, Xu Z, Culley DJ, Crosby G, Marcantonio ER, Tanzi RE, Xie Z. The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-alfa, IL-6, IL-1beta. Neurobiol Aging. 2012;33:1364–78.CrossRefGoogle Scholar
  11. 11.
    Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C, Feldmann M, Jonsson Fagerlund M, Charo IF, Akassoglou K, Maze M. Resolving postoperative neuroinflammation and cognitive decline. ANN Neurol. 2011;70:986–95.CrossRefGoogle Scholar
  12. 12.
    Vacas S, Degos V, Feng X, Maze M. The neuroinflammatory response of postoperative cognitive decline. Br Med Bull. 2013;106:161–78.CrossRefGoogle Scholar
  13. 13.
    Valentin LS, Pereira VF, Pietrobon RS, Schmidt AP, Oses JP, Portela LV, Souza DO, Vissoci JR, Luz VF, Trintoni LM, Nielsen KC, Carmona MJ Effects of single low dose of dexamethasone before noncardiac and nonneurologic surgery and general anesthesia on postoperative cognitive dysfunction- a phase III double blind, randomized clinical trial. PLos One. 2016. Scholar
  14. 14.
    Norden DM, Godbout JP. Microglia of the aged brain: primed to be activated and resistant to regulation. Neuropahtol Appl Neurobiol. 2013;39:19–34.CrossRefGoogle Scholar
  15. 15.
    Dilger RN, Johnson RW. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol. 2008;84:932–9.CrossRefGoogle Scholar
  16. 16.
    Guay J. General anaesthesia does not contribute to long-term post-operative cognitive dysfunction in adults: a meta-analysis. Indian J Anaesth. 2011;55:358–63.CrossRefGoogle Scholar
  17. 17.
    Evered L, Scott DA, Silbert B, Maruff P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg. 2011;112:1179–85.CrossRefGoogle Scholar
  18. 18.
    Nakao S, Xu Y. White matter injury in global cerebral ischemia. In: Carmichael S Jr and Baltan S, editor. White matter injury in stroke and cns disease. New York: Springer; 2014. 181–96.CrossRefGoogle Scholar
  19. 19.
    Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, Enright PL, O’Leary D, Fried L. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The cardiovascular health study. Stroke. 1996;27:1274–82.CrossRefGoogle Scholar
  20. 20.
    Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997;28:652–9.CrossRefGoogle Scholar
  21. 21.
    Schmidt R, Scheltens P, Erkinjuntti T, Pantoni L, Markus HS, Wallin A, Barkhof F, Fazekas F. White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease. Neurology. 2004;63:139–44.CrossRefGoogle Scholar
  22. 22.
    Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701CrossRefGoogle Scholar
  23. 23.
    ">Desmond DW. Cognition and white matter lesions. Cerebrovasc Dis. 2002;13(Suppl 2):53–7.CrossRefGoogle Scholar
  24. 24.
    ">Duncombe J, Kitamura A, Hase Y, Ihara M, Kakaria RN, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci. 2017;131:2451–88.CrossRefGoogle Scholar
  25. 25.
    Schmidt R, Grazer A, Enzinger C, Ropele S, Homayoon N, Pluta-Fuerst A, Schwingenschuh P, Katschnig P, Cavalieri M, Schmidt H, Langkammer C, Ebner F, Fazekas F. MRI-detected white matter lesions: do they really matter? J Neural Transm. 2011;118:673–81.CrossRefGoogle Scholar
  26. 26.
    Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996;27:1641–46.CrossRefGoogle Scholar
  27. 27.
    Dewar D, Yam P, McCulloch J. Drug development for stroke: Importance of protecting cerebral white matter. Eur J Pharmacol. 1999;375:41–50.CrossRefGoogle Scholar
  28. 28.
    Matute C. Glutamate and ATP signaling in white matter pathology. J Anat. 2011;219:53–64.CrossRefGoogle Scholar
  29. 29.
    Kubo K, Nakao S, Jomura S, Sakamoto S, Miyamoto E, Xu Y, Tomimoto H, Inada T, Shingu K. Edaravone, a free radical scavenger, mitigates both gray and white matter damages after global cerebral ischemia in rats. Brain Res. 2009;1279:139–46.CrossRefGoogle Scholar
  30. 30.
    Hatano Y, Narumoto J, Shibata K, Matsuoka T, Taniguchi S, Hata Y, Yamada K, Yaku H, Fukui K. White matter hyperintensities predict delirium after cardiac surgery. Am J Geriatr Psychiatry. 2013;21:938–45.CrossRefGoogle Scholar
  31. 31.
    Maekawa K, Baba T, Otomo S, Morishita S, Tamura N. Low pre-existing gray matter volume in the medial temporal lobe and white matter lesions are associated with postoperative cognitive dysfunction after cardiac surgery. PLoS One. 2014. Scholar
  32. 32.
    Kant IMJ, de Bresser J, van Montfort SJT, Slooter AJC, Hendrikse J. MRI markers of neurodegenerative and neurovascular changes in relation to postoperative delirium and postoperative cognitive decline. Am J Geriatr Psychiatry. 2017;25:1043–61.CrossRefGoogle Scholar
  33. 33.
    Feinkohl I, Winterer G, Pischon T. Diabetes is associated with risk of postoperative cognitive dysfunction: a meta-analysis. Diabetes Metab Res Rev. 2017. Scholar
  34. 34.
    Rundshagen I. Postoperative cognitive dysfunction (review). Dtsch Artebl Int. 2014;111:119–25.Google Scholar
  35. 35.
    Ihara M, Tomimoto H, Kinoshita M, Oh J, Noda M, Wakita H, Akiguchi I, Shibasaki H. Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 expression in the microglia and vascular endothelium of the white matter. J Cereb Blood Flow Metab. 2001;21:828–34.CrossRefGoogle Scholar
  36. 36.
    Miyamoto E, Tomimoto H, Nakao S, Wakita H, Akiguchi I, Miyamoto K, Shingu K. Caudoputamen is damaged by hypocapnia during mechanical ventilation in a rat model of chronic cerebral hypoperfusion. Stroke. 2001;32:2920–5.CrossRefGoogle Scholar
  37. 37.
    Miyamoto E, Nakao S, Tomimoto H, Wakita H, Yamada M, Masuzawa M, Takahira K, Sakamoto S, Shingu K. Ketamine attenuates hypoxia-induced neuronal damage in the caudoputamen in a rat model of chronic cerebral hypoperfusion. Neurosci Lett. 2004;354:26–9.CrossRefGoogle Scholar
  38. 38.
    Dewar D, Underhill SM, Goldberg MP. Oligodendrocytes and ischemic brain injury. J Cerebr Blood Flow Metab. 2003;23:263–74.CrossRefGoogle Scholar
  39. 39.
    Wang J, Zhang HY, Tang XC. Huperzine a improves chronic inflammation and cognitive decline in rats with cerebral hypoperfusion. J Neurosci Res. 2010;88:807–15.Google Scholar
  40. 40.
    Wakita H, Tomimoto H, Akiguchi I, Lin JX, Miyamoto K, Oka N. A cyclooxygenase-2 inhibitor attenuates white matter damage in chronic cerebral ischemia. Neuroreport. 1999;10:1461–5.CrossRefGoogle Scholar
  41. 41.
    Wakita H, Tomimoto H, Akiguchi I, Kimura J. Protective effect of cyclosporin a on white matter changes in the rat brain after chronic cerebral hypoperfusion. Stroke. 1995;26:1415–22.CrossRefGoogle Scholar
  42. 42.
    Wakita H, Tomimoto H, Akiguchi I, Kimura J. Dose-dependent, protective effect of FK506 against white matter changes in the rat brain after chronic cerebral ischemia. Brain Res. 1998;792:5–13.CrossRefGoogle Scholar
  43. 43.
    Ueno Y, Zhang N, Miyamoto N, Tanaka R, Hattori N, Urabe T. Edaravone attenuates white matter lesions through endothelial protection in a rat chronic hypoperfusion model. Neuroscience. 2009;162:317–27.CrossRefGoogle Scholar
  44. 44.
    Káradóttir R, Cavelier P, Bergersen LH, Attwell D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438:1162–6.CrossRefGoogle Scholar
  45. 45.
    Matute C. Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends Mol Med. 2006;12:289–92.CrossRefGoogle Scholar
  46. 46.
    Hovaguimian F, Tschopp C, Beck-Schimmer B, Puhan M. Intraoperative ketamine administration to prevent delirium or postoperative cognitive dysfunction. Acta Anaesthesiol Scand. 201862:1182–93.Google Scholar
  47. 47.
    Yamamoto T, Iwamoto T, Kimura S, Nakao S. Persistent isoflurane-induced hypotension causes hippocampal neuronal damage in a rat model of chronic cerebral hypoperfusion. J Anesth. 2018. Scholar
  48. 48.
    Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci. 2008;9:182–94.CrossRefGoogle Scholar
  49. 49.
    Pappa M, Theodosiadis N, Tsounis A, Sarafis P. Pathogenesis and treatment of post-operative cognitive dysfunction. Electron Phys. 2107;9:3768–75.CrossRefGoogle Scholar
  50. 50.
    Wollman SB, Orkin LR. Postoperative human reaction time and hypocarbia during anesthesia. Brit J Anaesth. 1968;40:920–6.CrossRefGoogle Scholar
  51. 51.
    Blenkarn GD, Briggs G, Bell J, Sugioka K. Cognitive function after hypocpnic hyperventilation. Anesthesiology. 1972;37:381–6.CrossRefGoogle Scholar
  52. 52.
    Murrin KR, Nagarajan TM. Hyperventilation and psychometric testing. A preliminary study. Anaesthesia. 1974;29:50–8.CrossRefGoogle Scholar
  53. 53.
    Thompson GE, Miller RD, Stevens WC, Murray WR. Hypotensive anesthesia for total hip arthroplasty. Anesthesiology. 1978;48:91–6.CrossRefGoogle Scholar
  54. 54.
    Niazi AA. Postoperative cognitive function and controlled hypotensive anesthesia in patients undergoing septoplasty. Egypt J Anaesth. 2016;32:61–6.CrossRefGoogle Scholar
  55. 55.
    Langer T, Santini A, Zadek F, Chiodi M, Pugni P, Cordolcini V, Bonanomi B, Rosini F, Marcucci M, Valenza F, Marenghi C, Inglese S, Pesenti A, Gattinoni L. Intraoperative hypotension is not associated with postoperative cognitive dysfunction in elderly patients undergoing general anesthesia for surgery: results of a randomized controlled pilot trial. J Clin Anesth. 2019;52:111–8.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2019

Authors and Affiliations

  • Shinichi Nakao
    • 1
    Email author
  • Tomohisa Yamamoto
    • 1
  • Seishi Kimura
    • 1
  • Takashi Mino
    • 1
  • Tatsushige Iwamoto
    • 1
  1. 1.Department of AnesthesiologyKindai University Faculty of MedicineOsakasayamaJapan

Personalised recommendations