Journal of Anesthesia

, Volume 32, Issue 6, pp 880–885 | Cite as

Dexmedetomidine preserves the endothelial glycocalyx and improves survival in a rat heatstroke model

  • Kensuke Kobayashi
  • Soichiro Mimuro
  • Tsunehisa Sato
  • Atsushi Kobayashi
  • Shingo Kawashima
  • Hiroshi Makino
  • Matsuyuki Doi
  • Takasumi Katoh
  • Yoshiki Nakajima
Original Article



Heatstroke causes systemic inflammation, followed by vascular endothelial damage. The normal vascular endothelium is coated by endothelial glycocalyx (EGCX). Dexmedetomidine (DEX) has an anti-inflammatory effect, but there has been little investigation on the influence of heatstroke on EGCX and the effect of DEX on this condition. Therefore, we examined whether EGCX was disrupted in heatstroke and if DEX improved survival and preserves EGCX.


Anesthetized Wistar rats were randomly assigned to three groups: a DEX group treated with DEX (5 µg/kg/h) and 0.9% saline infused continuously at 10 ml/kg/h during heat exposure; a NSS group given 0.9% saline during heat exposure; and a SHAM group given 0.9% saline alone without heat exposure. Heatstroke was induced by exposure to an ambient temperature of 40 °C with relative humidity of 60%. The survival rate was assessed up to 2 h after the start of heat exposure. Plasma levels of syndecan-1 and the thickness of EGCX using electron microscopy were measured when the systolic blood pressure fell to less than 80 mmHg.


The survival rate after 2 h of heat exposure was significantly higher in the DEX group compared to the NSS group (89% vs. 22%, P = 0.004). Plasma levels of syndecan-1 were 0.6 ± 1.3, 9.7 ± 5.9, and 2.1 ± 3.4 ng/ml in the SHAM, NSS and DEX groups, respectively (P = 0.013). The thickness of EGCX was significantly higher in the DEX group compared with the NSS group (P = 0.001).


EGCX was disrupted in heatstroke, and DEX improved survival and preserved EGCX.


Dexmedetomidine Heatstroke Glycocalyx 


  1. 1.
    Hifumi T, Kondo Y, Shimizu K, Miyake Y. Heat stroke. J Intensive Care. 2018;6:1–8.CrossRefGoogle Scholar
  2. 2.
    Bouchama AKJ. Heat stroke. N Engl J Med. 2002;346:1978–88.CrossRefGoogle Scholar
  3. 3.
    Nakajima Y, Baudry N, Duranteau J, Vicaut E. Effects of vasopressin, norepinephrine, and l-arginine on intestinal microcirculation in endotoxemia. Crit Care Med. 2006;34:1752–7.CrossRefGoogle Scholar
  4. 4.
    Lee WL, Slutsky AS. Sepsis and Endothelial Permeability. N Engl J Med. 2010;363:689–91.CrossRefGoogle Scholar
  5. 5.
    Kataoka H, Ushiyama A, Akimoto Y, Matsubara S, Kawakami H, Iijima T. Structural behavior of the endothelial glycocalyx is associated with pathophysiologic status in septic mice: an integrated approach to analyzing the behavior and function of the glycocalyx using both electron and fluorescence intravital microscopy. Anesth Analg. 2017;125:874–83.CrossRefGoogle Scholar
  6. 6.
    Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: Acute deficits, but great potential. Cardiovasc Res. 2010;87:300–10.CrossRefGoogle Scholar
  7. 7.
    Chappell D, Westphal M, Jacob M. The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness. Curr Opin Anaesthesiol. 2009;22:155–62.CrossRefGoogle Scholar
  8. 8.
    Sano H, Doi M, Mimuro S, Yu S, Kurita T, Sato S. Evaluation of the Hypnotic and Hemodynamic Effects of Dexmedetomidine on Propofol-Sedated Swine. Exp Anim. 2010;59:199–205.CrossRefGoogle Scholar
  9. 9.
    Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, Koami H, Beppu S, Katayama Y, Itoh M, Ohta Y, Yamamura H. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis. JAMA. 2017;317:1321–8.CrossRefGoogle Scholar
  10. 10.
    Taniguchi T, Kidani Y, Kanakura H, Takemoto Y, Yamamoto K. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Crit Care Med. 2004;32:1322–6.CrossRefGoogle Scholar
  11. 11.
    Yeh YC, Wu CY, Cheng YJ, Liu CM, Hsiao JK, Chan WS, Wu ZG, Yu LCH, Sun WZ. Effects of dexmedetomidine on intestinal microcirculation and intestinal epithelial barrier in endotoxemic rats. Anesthesiology. 2016;125:355–67.CrossRefGoogle Scholar
  12. 12.
    Xia ZN, Zong Y, Zhang ZT, Chen JK, Ma XJ, Liu YG, Zhao LJ, Lu GC. Dexmedetomidine protects against multi-organ dysfunction induced by heatstroke via sustaining the intestinal integrity. Shock. 2017;48:260–9.CrossRefGoogle Scholar
  13. 13.
    Taniguchi T, Kurita A, Kobayashi K, Yamamoto K, Inaba H. Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats. J Anesth. 2008;22:221–8.CrossRefGoogle Scholar
  14. 14.
    Zhang X-Y, Liu Z-M, Wen S-H, Li Y-S, Li Y, Yao X, Huang W-Q, Liu K-X. Dexmedetomidine administration before, but not after, ischemia attenuates intestinal injury induced by intestinal ischemia-reperfusion in rats. Anesthesiology. 2012;116:1035–46.CrossRefGoogle Scholar
  15. 15.
    Bashandy GM. Implications of recent accumulating knowledge about endothelial glycocalyx on anesthetic management. J Anesth. 2015;29:269–78.CrossRefGoogle Scholar
  16. 16.
    Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 Level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254:194–200.CrossRefGoogle Scholar
  17. 17.
    Miranda ML, Balarini MM, Bouskela E. Dexmedetomidine attenuates the microcirculatory derangements evoked by experimental sepsis. Anesthesiology. 2015;122:619–30.CrossRefGoogle Scholar
  18. 18.
    Strunden MS, Bornscheuer A, Schuster A, Kiefmann R, Goetz AE, Heckel K. Glycocalyx degradation causes microvascular perfusion failure in the ex vivo perfused mouse lung: Hydroxyethyl starch 130/0.4 pretreatment attenuates this response. Shock. 2012;38:559–66.CrossRefGoogle Scholar
  19. 19.
    Yamakawa K, Matsumoto N, Imamura Y, Muroya T, Yamada T, Nakagawa J, Shimazaki J, Ogura H, Kuwagata Y, Shimazu T. Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model. PLoS One. 2013;8:e56728.CrossRefGoogle Scholar
  20. 20.
    Liu Z, Wang Y, Ning Q, Gong C, Zhang Y, Zhang L, Bu X, Jing G. The role of spleen in the treatment of experimental lipopolysaccharide—induced sepsis with dexmedetomidine. Springerplus. 2015;4:800.CrossRefGoogle Scholar
  21. 21.
    Okada H, Takemura G, Suzuki K, Oda K, Takada C, Hotta Y, Miyazaki N, Tsujimoto A, Muraki I, Ando Y, Zaikokuji R, Matsumoto A, Kitagaki H, Tamaoki Y, Usui T, Doi T, Yoshida T, Yoshida S, Ushikoshi H, Toyoda I, Ogura S. Three-dimensional ultrastructure of capillary endothelial glycocalyx under normal and experimental endotoxemic conditions. Crit Care. 2017;21:261.CrossRefGoogle Scholar
  22. 22.
    Inagawa R, Okada H, Takemura G, Suzuki K, Takada C, Yano H, Ando Y, Usui T, Hotta Y, Miyazaki N, Tsujimoto A, Zaikokuji R, Matsumoto A, Kawaguchi T, Doi T, Yoshida T, Yoshida S, Kumada K, Ushikoshi H, Toyoda I, Ogura S. Ultrastructural alteration of pulmonary capillary endothelial glycocalyx during endotoxemia. Chest. 2018;154:317–25.CrossRefGoogle Scholar
  23. 23.
    Van den Berg BM, Vink H, Spaan JAE. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;92:592–4.CrossRefGoogle Scholar
  24. 24.
    Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, Chappell D, Stoeckelhuber M, Welsch U, Reichart B, Peter K, Becker BF. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896–906.CrossRefGoogle Scholar
  25. 25.
    Mimuro S, Katoh T, Suzuki A, Yu S, Adachi YU, Uraoka M, Sano H, Sato S. Deterioration of myocardial injury due to dexmedetomidine administration after myocardial ischaemia. Resuscitation. 2010;81:1714–7.CrossRefGoogle Scholar
  26. 26.
    Okada H, Kurita T, Mochizuki T, Morita K, Sato S. The cardioprotective effect of dexmedetomidine on global ischaemia in isolated rat hearts. Resuscitation. 2007;74:538–45.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2018

Authors and Affiliations

  • Kensuke Kobayashi
    • 1
  • Soichiro Mimuro
    • 1
  • Tsunehisa Sato
    • 1
  • Atsushi Kobayashi
    • 1
  • Shingo Kawashima
    • 1
  • Hiroshi Makino
    • 1
  • Matsuyuki Doi
    • 1
  • Takasumi Katoh
    • 1
  • Yoshiki Nakajima
    • 1
  1. 1.Department of Anesthesiology and Intensive CareHamamatsu University School of MedicineHamamatsuJapan

Personalised recommendations